Skip to main content
Log in

Extrinsic Absorption by Copper(II) Ions in Molybdenum-Containing Zinc Tellurite Glass

  • Published:
Inorganic Materials Aims and scope

Abstract—

Optical transmission of Cu2+-doped glass with the composition (TeO2)0.72(ZnO)0.18(MoO3)0.10 has been studied at dopant concentrations from 0.008 to 0.250 wt % and wavelengths from 0.45 to 2.80 μm. The transmission spectra of the glasses each have one strong absorption band peaking at ~819 nm. From the composition dependence of the absorption coefficient for a series of Cu2+-doped glass samples, we have calculated the specific absorption coefficient of Cu2+ ions, 4070 ± 83 dB/(km ppm) at 819 nm, and obtained its spectral dependence in the wavelength range studied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Rivera, V.A.G. and Manzani, D., Technological Advances in Tellurite Glasses: Properties, Processing, and Applications, Cham: Springer, 2017, p. 344.

    Book  Google Scholar 

  2. Khatir, S., Bolka, J., Capoen, B., Turrell, S., and Bouazaoui, M., Raman spectroscopic characterization of Er3+-doped tellurite-based glasses, J. Mol. Struct., 2001, vols. 563–564, no. 5, pp. 283–287. https://doi.org/10.1016/S0022-2860(01)00440-9

    Article  Google Scholar 

  3. Strutynski, C., Desevedavy, F., Lemière, A., Jules, J.-C., Gadret, G., Cardinal, T., Smektala, F., and Danto, S., Tellurite-based core–clad dual-electrodes composite fibers, Opt. Mater. Express, 2017, vol. 7, no. 5, pp. 1503–1508. https://doi.org/10.1364/OME.7.001503

    Article  CAS  Google Scholar 

  4. Himamaheswara Rao, V., Syam Prasad, P., Mohan Babu, M., Venkateswara Rao, P., Satyanarayana, T., Santos, L.F., and Veeraiah, N., Spectroscopic studies of Dy3+ ion doped tellurite glasses for solid state lasers and white LEDs, Spectrochim. Acta, Part A, 2018, vol. 188, pp. 516–524. https://doi.org/10.1016/j.saa.2017.07.013

    Article  CAS  Google Scholar 

  5. El-Mallawany, R.A.H., Tellurite Glass Smart Materials: Applications in Optics and Beyond, Cham: Springer, 2018.

    Book  Google Scholar 

  6. El-Mallawany, R.A.H., Tellurite Glasses Handbook: Physical Properties and Data, Boca Raton: CRC, 2011, p. 532.

    Google Scholar 

  7. Zhang, W. and Halasyamani, P.S., Top-seeded solution crystal growth of noncentrosymmetric and polar Zn2TeMoO7 (ZTM), J. Solid State Chem., 2015, vol. 236, pp. 32–38. https://doi.org/10.1016/j.jssc.2015.08.044

    Article  CAS  Google Scholar 

  8. Liu, J.L., Wang, W.C., Xiao, Y.B., Huang, S.J., Mao, L.Y., and Zhang, Q.Y., Nd3+-doped TeO2–MoO3–ZnO tellurite glass for a diode-pump 1.06 μm laser, J. Non-Cryst. Solids, 2019, vol. 506, pp. 32–38. https://doi.org/10.1016/j.jnoncrysol.2018.11.030

    Article  CAS  Google Scholar 

  9. Snopatin, G.E., Plotnichenko, V.G., Volkov, S.A., Dorofeev, V.V., Dianov, E.M., and Churbanov, M.F., Extinction coefficient of Ni2+ in (TeO2)0.78(WO3)0.2 glass, Inorg. Mater., 2010, vol. 46, no. 8, pp. 914–917. https://doi.org/10.1134/S0020168510080212

    Article  CAS  Google Scholar 

  10. Zamyatin, O.A., Churbanov, M.F., Plotnichenko, V.G., Sibirkin, A.A., and Goreva, I.G., Specific absorption coefficient of nickel in (TeO2)0.80(MoO3)0.20 glass, Inorg. Mater., 2015, vol. 51, no. 3, pp. 278–282. https://doi.org/10.1134/S0020168515030188

    Article  CAS  Google Scholar 

  11. Zamyatin, O.A., Churbanov, M.F., Plotnichenko, V.G., Kharakhordin, A.V., Sibirkin, A.A., and Fedotova, I.G., Specific absorption coefficient of cobalt(II) in (TeO2)0.80(MoO3)0.20 glass, Inorg. Mater., 2015, vol. 51, no. 6, pp. 631–634. https://doi.org/10.1134/S0020168515060199

    Article  CAS  Google Scholar 

  12. Zamyatin, O.A., Churbanov, M.F., Plotnichenko, V.G., Sibirkin, A.A., Fedotova, I.G., and Gavrin, S.A., Specific absorption coefficient of copper in (TeO2)0.80(MoO3)0.20 glass, Inorg. Mater., 2015, vol. 51, no. 12, pp. 1283–1287. https://doi.org/10.1134/S0020168515110163

    Article  CAS  Google Scholar 

  13. Dorofeev, V.V., Moiseev, A.N., Churbanov, M.F., Snopatin, G.E., Chilyasov, A.V., Kraev, I.A., Lobanov, A.S., Kotereva, T.V., Ketkova, L.A., Pushkin, A.A., Gerasimenko, V.V., Plotnichenko, V.G., Kosolapov, A.F., and Dianov, E.M., High-purity TeO2–WO3–(La2O3,Bi2O3) glasses for fiber-optics, Opt. Mater., 2011, vol. 33, no. 12, pp. 1911–1915. https://doi.org/10.1016/j.optmat.2011.03.032

    Article  CAS  Google Scholar 

  14. Moiseev, A.N., Dorofeev, V.V., Chilyasov, A.V., Kraev, I.A., Churbanov, M.F., Kotereva, T.V., Pimenov, V.G., Snopatin, G.E., Pushkin, A.A., Gerasimenko, V.V., Kosolapov, A.F., Plotnichenko, V.G., and Dianov, E.M., Production and properties of high purity TeO2–ZnO–Na2O–Bi2O3 and TeO2–WO3–La2O3–MoO3 glasses, Opt. Mater., 2011, vol. 33, no. 12, pp. 1858–1861. https://doi.org/10.1016/j.optmat.2011.02.042

    Article  CAS  Google Scholar 

  15. Lyubchanskii, I.L., Dadoenkova, N.N., Lyubchanskii, M.I., Shapovalov, E.A., and Rasing, T., Magnetic photonic crystals, J. Phys. D: Appl. Phys., 2003, vol. 36, no. 18, pp. R277–R287. https://doi.org/10.1088/0022-3727/36/18/R01

    Article  CAS  Google Scholar 

  16. Kozak, A.J., Wieczorek-Ciurowa, K., and Kozak, A., The thermal transformations in Zn(NO3)2⋅H2O (1 : 6) system, J. Therm. Anal. Calorim., 2003, vol. 74, no. 2, pp. 497–502. https://doi.org/10.1023/B:JTAN.0000005186.15474.be

    Article  CAS  Google Scholar 

  17. Małecki, A., Gajerski, R., Łabuś, S., Prochowska-Klisch, B., and Wojciechowski, K.T., Mechanism of thermal decomposition of d-metals nitrates hydrates, J. Therm. Anal. Calorim., 2000, vol. 60, no. 1, pp. 17–23. https://doi.org/10.1023/A:1010155931266

    Article  Google Scholar 

  18. Živković Ž.D., Živković, D.T., and Grujičić, D.B., Kinetics and mechanism of the thermal decomposition of M(NO3)2nH2O (M = Cu, Co, Ni), J. Therm. Anal. Calorim., 1998, vol. 53, no. 2, pp. 617–623. https://doi.org/10.1023/A:1010170231923

    Article  Google Scholar 

  19. Nikolic, R., Zec, S., Maksimovic, V., and Mentus, S., Physico-chemical characterization of thermal decomposition course in zinc nitrate–copper nitrate hexahydrates, J. Therm. Anal. Calorim., 2006, vol. 86, no. 2, pp. 423–428. https://doi.org/10.1007/s10973-005-7237-z

    Article  CAS  Google Scholar 

  20. Ahmed, M.A.K., Fjellvåg, H., and Kjekshus, A., Synthesis, structure and thermal stability of tellurium oxides and oxide sulfate formed from reactions in refluxing sulfuric acid, J. Chem. Soc., Dalton Trans., 2000, no. 24, pp. 4542–4549. https://doi.org/10.1039/B005688J

  21. Von Rosicky, J., Loub, J., and Pavel, J., Ber die thermische Zersetzung der Orthotellursäure und die Verbindung Te2O5, Z. Anorg. Allg. Chem., 1965, vol. 334, nos. 5–6, pp. 312–320. https://doi.org/10.1002/zaac.19653340512

    Article  Google Scholar 

  22. Bart, J.C.J., Bossi, A., Perissinoto, P., Castellan, A., and Giordano, N., Some observations on the thermochemistry of telluric acid, J. Therm. Anal., 1975, vol. 8, no. 2, pp. 313–327. https://doi.org/10.1007/BF01904009

    Article  CAS  Google Scholar 

  23. Bayer, G., On the polymorphism of orthotelluric acid, H6TeO6, J. Less-Common. Met., 1968, vol. 16, no. 3, pp. 215–222. https://doi.org/10.1016/0022-5088(68)90017-9

    Article  CAS  Google Scholar 

  24. Feger, C.R., Schimek, G.L., and Kolis, J.W., Hydrothermal synthesis and characterization of M2Te3O8 (M = Mn, Co, Ni, Cu, Zn): a series of compounds with the spiroffite structure, J. Solid State Chem., 1999, vol. 143, no. 2, pp. 246–253. https://doi.org/10.1006/jssc.1998.8101

    Article  CAS  Google Scholar 

  25. Pertlik, F., Dimorphism of hydrothermal synthesized copper tellurite, CuTeO3: the structure of a monoclinic representative, J. Solid State Chem., 1987, vol. 71, no. 2, pp. 291–295. https://doi.org/10.1016/0022-4596(87)90236-2

    Article  CAS  Google Scholar 

  26. Stavrakeva, D., Ivanova, Y., and Pyrov, Y., New data on the composition of the crystalline phases in the Cu–Te–O system, J. Mater. Sci., 1990, vol. 25, no. 4, pp. 2175–2180. https://doi.org/10.1007/BF01045785

    Article  CAS  Google Scholar 

  27. Zhu, X., Wang, Z., Su, X., and Vilarinho, P.M., New Cu3TeO6 ceramics: phase formation and dielectric properties, ACS Appl. Mater. Interfaces, 2014, vol. 6, no. 14, pp. 11326–11332. https://doi.org/10.1021/am501742z

    Article  CAS  PubMed  Google Scholar 

  28. Yoshida, T., Hirashima, H., and Kato, M., Electrical conductivity of glass and crystallized glass of system CuO−V2O5−TeO2, J. Ceram. Association, 1985, vol. 93, no. 1077, pp. 244–251. https://doi.org/10.2109/jcersj1950.93.1077_244

    Article  CAS  Google Scholar 

  29. Gayathri Pavani, P., Vijaya Kumar, R., and Chandra Mouli, V., Characterization of ZnO based boro tellurite glass system, Phys. Chem. Glasses: Eur. J. Glass Sci. Technol., 2016, vol. 57, no. 2, pp. 104–110. https://doi.org/10.13036/17533562.57.2.013

    Article  Google Scholar 

  30. Upender, G., Devi, C.S., Kamalaker, V., and Mouli, V.C., The structural and spectroscopic investigations of ternary tellurite glasses, doped with copper, J. Alloys Compd., 2011, vol. 509, no. 19, pp. 5887–5892. https://doi.org/10.1016/j.jallcom.2011.03.001

    Article  CAS  Google Scholar 

  31. Sreedhar, B., Rao, J.L., and Lakshman, S.V.J., Electron spin resonance and optical absorption spectra of Cu2+ ions in alkali zinc borosulphate glasses, J. Non-Cryst. Solids, 1990, vol. 124, nos. 2–3, pp. 216–220. https://doi.org/10.1016/0022-3093(90)90265-N

    Article  CAS  Google Scholar 

  32. Narendra, G.L., Sreedhar, B., Rao, J.L., and Lakshman, S.V.J., Electron spin resonance and optical absorption spectra of Cu2+ ions in Na2SO4−ZnSO4 glasses, J. Mater. Sci., 1991, vol. 26, no. 19, pp. 5342–5346. https://doi.org/10.1007/BF01143231

    Article  CAS  Google Scholar 

  33. Ramadevudu, G., Shareefuddin, M., Sunitha Bai, N., Lakshmipathi Rao, M., and Narasimha Chary, M., Electron paramagnetic resonance and optical absorption studies of Cu2+ spin probe in MgO–Na2O–B2O3 ternary glasses, J. Non-Cryst. Solids, 2000, vol. 278, nos. 1–3, pp. 205–212. https://doi.org/10.1016/S0022-3093(00)00255-6

    Article  CAS  Google Scholar 

  34. Rayan, D.A., Elbashar, Y.H., Rashad, M.M., and El-Korashy, A., Optical spectroscopic analysis of cupric oxide doped barium phosphate glass for bandpass absorption filter, J. Non-Cryst. Solids, 2013, vol. 382, pp. 52–56. https://doi.org/10.1016/j.jnoncrysol.2013.10.002

    Article  CAS  Google Scholar 

  35. Stefan, R., Culea, E., and Pascuta, P., The effect of copper ions addition on structural and optical properties of zinc borate glasses, J. Non-Cryst. Solids, 2012, vol. 358, no. 4, pp. 839–846. https://doi.org/10.1016/j.jnoncrysol.2011.12.079

    Article  CAS  Google Scholar 

  36. Upender, G., Prasad, M., and Mouli, V.C., Vibrational, EPR and optical spectroscopy of the Cu2+ doped glasses with (90 − x)TeO2−10GeO2xWO3 (7.5 ≤ x ≤ 30) composition, J. Non-Cryst. Solids, 2011, vol. 357, no. 3, pp. 903–909. https://doi.org/10.1016/j.jnoncrysol.2010.12.001

    Article  CAS  Google Scholar 

  37. Kamalaker, V., Upender, G., Prasad, M., and Mouli, V.C., Infrared, ESR and optical absorption studies of Cu2+ ions doped in TeO2−ZnO−NaF glass system, Indian J. Pure Appl. Phys., 2010, vol. 48, no. 10, pp. 709–715.

    CAS  Google Scholar 

  38. Schultz, P.C., Optical absorption of the transition elements in vitreous silica, J. Am. Ceram. Soc., 1974, vol. 57, no. 7, pp. 309–313. https://doi.org/10.1111/j.1151-2916.1974.tb10908.x

    Article  CAS  Google Scholar 

  39. Newns, G.R., Pantelis, P., Wilson, J.L., Uffen, R.W.J., and Worthington, R., Absorption losses in glasses and glass fibre waveguides, Opto-electronics, 1973, vol. 5, no. 4, pp. 289–296. https://doi.org/10.1007/BF02057128

    Article  CAS  Google Scholar 

  40. Spierings, G.A.C.M., Optical absorption of transition metals in alkali lime germanosilicate glasses, J. Mater. Sci., 1979, vol. 14, no. 10, pp. 2519–2521. https://doi.org/10.1007/BF00737045

    Article  CAS  Google Scholar 

  41. Keppler, H., Crystal field spectra and geochemistry of transition metal ions in silicate melts and glasses, Am. Mineral., 1992, vol. 77, nos. 1–2, pp. 62–75.

    CAS  Google Scholar 

  42. France, P.W., Carter, S.W., and Williams, J.R., Effects of atmosphere control on the oxidation states of 3d transition metals in ZrF4 based glasses, Mater. Sci. Forum, 1985, vols. 5–6, pp. 353–359. https://doi.org/10.4028/www.scientific.net/MSF.5-6.353

    Article  Google Scholar 

  43. Zamyatin, O.A., Plotnichenko, V.G., Churbanov, M.F., Zamyatina, E.V., and Karzanov, V.V., Optical properties of zinc tellurite glasses doped with Cu2+ ions, J. Non-Cryst. Solids, 2018, vol. 480, pp. 81–89. https://doi.org/10.1016/j.jnoncrysol.2017.08.025

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the Russian Federation Ministry of Science and Higher Education, state research target, basic research, project no. 0729-2020-0039.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. A. Zamyatin.

Additional information

Translated by O. Tsarev

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zamyatin, O.A., Leksakov, D.A. & Nosov, Z.K. Extrinsic Absorption by Copper(II) Ions in Molybdenum-Containing Zinc Tellurite Glass. Inorg Mater 57, 1178–1183 (2021). https://doi.org/10.1134/S0020168521110145

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0020168521110145

Keywords:

Navigation