Skip to main content
Log in

Optical and Electrical Properties of V2O5 Gel-Based Thin Films

  • Published:
Inorganic Materials Aims and scope

Abstract—

Films of various thicknesses have been produced on silicon substrates via centrifugation of V2O5 gel, followed by vacuum annealing. The optical characteristics of the films have been shown to be well fitted by the Cauchy and Bruggeman models. The thermal hysteresis loop of their insulator–metal transition and the amplitude of the variation in their resistivity are determined by their phase composition and the degree of their crystallinity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. Wang, W., Luo, Y., Zhang, D., and Luo, F., Dynamic optical limiting experiments on vanadium dioxide and vanadium pentoxide thin films irradiated by a laser beam, Appl. Opt., 2006, vol. 45, no. 14, pp. 3378–3381.https://doi.org/10.1364/AO.45.003378

    Article  CAS  PubMed  Google Scholar 

  2. Wan, C., Horak, E. H., King, J., Salman, J., Zhang, Z., Zhou, Y., Roney, P., Gundlach, B., Ramanathan, S., Goldsmith, R.H., and Kats, M.A., Limiting Optical Diodes Enabled by the Phase Transition of Vanadium Dioxide, ACS Photonics, 2018, vol. 5, no. 7, pp 2688–2692.https://doi.org/10.1021/acsphotonics.8b00313

    Article  CAS  Google Scholar 

  3. Soltani, M., Chaker, M., Haddad, E., Kruzelecky, R.V., and Nikanpour, D., Optical switching of vanadium dioxide thin films deposited by reactive pulsed laser deposition, J. Vac. Sci. Technol., A, 2004, vol. 22, pp. 859–864.https://doi.org/10.1116/1.1722506

    Article  CAS  Google Scholar 

  4. Ligmajer, F., Kejík, L., Šikola, T., Konečný, M., Lei, D.Y., Tiwari, U., Appavoo, K., Qiu, M., Jin, W., Nag, J., and Haglund, R.F., Epitaxial VO2 nanostructures: a route to large-scale, switchable dielectric metasurfaces, ACS Photonics, 2018, vol. 5, no. 7, pp. 2561–2567.https://doi.org/10.1021/acsphotonics.7b01384

    Article  CAS  Google Scholar 

  5. Kats, M.A., Blanchard, R., Zhang, S., Genevet, P., Ko, C., Ramanathan, S., and Capasso, F., Vanadium dioxide as a natural disordered metamaterial: perfect thermal emission and large broadband negative differential thermal emittance, Phys. Rev. X, 2013, vol. 3, no. 4, paper 041004.https://doi.org/10.1103/PhysRevX.3.041004

  6. Yang, Z., Ko, C., and Ramanathan, S., Oxide electronics utilizing ultrafast metal–insulator transitions, Annu. Rev. Mater. Res., 2011, vol. 41, pp. 337–367.https://doi.org/10.1146/annurev-matsci-062910-100347

    Article  CAS  Google Scholar 

  7. Kakiuchida, H., Jin, P., Nakao, S., and Tazawa, M., Optical properties of vanadium dioxide film during semiconductive–metallic phase transition, Jpn. J. Appl. Phys., 2007, vol. 46, no. 2L, paper L113.

  8. Sladkopevtsev, B.V., Mittova, I.Ya., Tomina, E.V., and Burtseva, N.A., Growth of vanadium oxide films on InP under mild conditions and thermal oxidation of the resultant structures, Inorg. Mater., 2012, vol. 48, no. 2, pp. 161–168.https://doi.org/10.1134/S0020168512020173

    Article  CAS  Google Scholar 

  9. Berezina, O.Ya., Velichko, A.A., Lugovskaya, L.A., Pergament, A.L., and Stefanovich, G.B., Metal–semiconductor transition in nonstoichiometric vanadium dioxide films, Inorg. Mater., 2007, vol. 43, no. 5, pp. 505–511.https://doi.org/10.1134/S0020168507050123

    Article  CAS  Google Scholar 

  10. Timoshenkov, S.P., Kalugin, V.V., and Prokop’ev, E.P., Technology of silicon wafers in the fabrication of SOI structures and microelectronic articles, Nano-Mikrosist. Tekh., 2003, no. 1, pp. 13–22.

  11. Kudasov, Yu.B., Elektrofizicheskie izmereniya (Electrical Transport Measurements), Moscow: Fizmatlit, 2010.

  12. Ningyi, Y., Jinhua, L., and Chenglu, L., Valence reduction process from sol–gel V2O5 to VO2 thin films, Appl. Surf. Sci., 2002, vol. 191, nos. 1–4, pp. 176–180.https://doi.org/10.1016/S0169-4332(02)00180-0

    Article  Google Scholar 

  13. Hanlon, T.J., Walker, R.E., Coath, J.A., and Richardson, M.A., Comparison between vanadium dioxide coatings on glass produced by sputtering, alkoxide and aqueous sol–gel methods, Thin Solid Films, 2002, vol. 405, no. 1, pp. 234–237.https://doi.org/10.1016/S0040-6090(01)01753-9

    Article  CAS  Google Scholar 

  14. Wells, A., Structural Inorganic Chemistry, Oxford: Clarendon, 1984, vol. 3.

    Google Scholar 

  15. Mittova, I.Ya., Shvets, V.A., Tomina, E.V., Samsonov, A.A., Sladkopevtsev, B.V., and Tret’yakov, N.N., Determination of the thickness and optical constants of nanofilms produced by the thermal oxidation of InP with V2O5, V2O5 + PbO, and NiO + PbO chemical stimulator layers grown by magnetron sputtering, Inorg. Mater., 2013, vol. 49, no. 10, p. 963–970.https://doi.org/10.1134/S0020168513100075

    Article  CAS  Google Scholar 

  16. Shvets, V.A., Rykhlitskii, S.V., Mittova, I.Ya., and Tomina, E.V., Analysis of the optical and structural properties of oxide films on InP using spectroscopic ellipsometry, Tech. Phys., 2013, vol. 83, no. 11, pp. 92–99.https://doi.org/10.1134/S1063784213110248

    Article  CAS  Google Scholar 

  17. Mittova, I.Ya., Shvets, V.A., Tomina, E.V., Sladkopevtsev, B.V., Tret’yakov, N.N., and Lapenko, A.A., High-speed determination of the thickness and spectral ellipsometry investigation of films produced by the thermal oxidation of InP and VxOy/InP structures, Inorg. Mater., 2013, vol. 49, no. 2, pp. 179–184.https://doi.org/10.1134/S0020168513020143

    Article  CAS  Google Scholar 

  18. Kristoffersen, H.H. and Metiu, H., Structure of V2O5nH2O xerogels, J. Phys. Chem. C, 2016, vol. 120, no. 7, pp. 3986–3992.https://doi.org/10.1021/acs.jpcc.5b12418

    Article  CAS  Google Scholar 

  19. Gavrilyuk, A.I., Reinov, N.M., and Chudnovskii, F.A., Photo- and thermochromism in amorphous V2O5 films, Pis’ma Zh. Tehk. Fiz., 1979, vol. 5, no. 20, pp. 1227–1230.

    CAS  Google Scholar 

  20. Lamsal, C. and Ravindra, N.M., Optical properties of vanadium oxides—an analysis, J. Mater. Sci., 2013, vol.  48, no. 18, pp. 6341–6351.https://doi.org/10.1007/s10853-013-7433-3

    Article  CAS  Google Scholar 

  21. Rensberg, J., Zhou, Y., Richter, S., Wan, C., Zhang, S., Schöppe, P., Schmidt-Grund, R., Ramanathan, S., Capasso, F., Kats, M.A., and Ronning, C., Epsilon-near-zero substrate engineering for ultrathin-film perfect absorbers, Phys. Rev. Appl., 2017, vol. 8, no. 1, paper 014009.https://doi.org/10.1103/PhysRevApplied.8.014009

Download references

ACKNOWLEDGMENTS

This work was carried out in part using equipment at the Shared Research Facilities Center, Voronezh State University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. V. Tomina.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tomina, E.V., Kopytin, S.S. & Sladkopevtsev, B.V. Optical and Electrical Properties of V2O5 Gel-Based Thin Films. Inorg Mater 57, 1020–1027 (2021). https://doi.org/10.1134/S0020168521100162

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0020168521100162

Keywords:

Navigation