Skip to main content
Log in

Heat Capacity and Thermal Expansion of Samarium Hafnate

  • Published:
Inorganic Materials Aims and scope

Abstract—

The molar heat capacity and lattice parameter of samarium hafnate with the pyrochlore structure have been measured as functions of temperature in the ranges 320–1300 and 298–1273 K, and its thermal expansion coefficients have been evaluated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. Isupova, E.N., Glushkova, V.B., and Keler, K.E., The HfO2–Sm2O3 system in solid phases in the HfO2-rich region, Izv. Akad. Nauk SSSR. Neorg. Mater., 1968, vol. 4, pp. 1330–1331.

    Google Scholar 

  2. Duran, P., The system hafnia–samaria, J. Am. Ceram. Soc., 1979, vol. 62, pp. 9–12.https://doi.org/10.1111/j.1151-2916.1979.tb18794.x

    Article  CAS  Google Scholar 

  3. Shevchenko, A.V., Lopato, L.M., and Nazarenko, L.V., The systems of HfO2 with oxides of samarium, gadolinium, terbium and dysprosium at high temperatures, Izv. Akad. Nauk SSSR, Neorg. Mater., 1984, vol. 20, pp. 1862–1866.

    CAS  Google Scholar 

  4. Paputsky, Yu.N., Krzizanovskaya, V.A., and Glushkova, V.B., Formation enthalpy for rare earth hafnates and zirconates, Izv. Akad. Nauk SSSR, Neorg. Mater., 1974, vol. 10, pp. 1551–1552.

    Google Scholar 

  5. Arsen’ev, P.A., Glushkova, V.B., Evdokimov, A.A., et al., Soedineniya redkozemel’nykh elementov. Tsirkonaty, gafnaty, niobaty, tantalaty, antimonaty (Rare-Earth Compounds: Zirconates, Hafnates, Niobates, Tantalates, and Antimonates), Moscow: Nauka, 1985.

  6. Andrievskaya, E.R., Phase equilibria in the refractory oxide systems of zirconia, hafnia and yttria with rare-earth oxides, J. Eur. Ceram. Soc., 2008, vol. 28, pp. 2363–2388.https://doi.org/10.1016/jeurceramsoc.2008.01.009

    Article  CAS  Google Scholar 

  7. Stanec, C.R. and Grimes, R.W., Prediction of rare-earth A2Hf2O7 pyrochlore phases, J. Am. Ceram. Soc., 2002, vol. 85, pp. 2139–2141.https://doi.org/10.1111/j.1151-2916.2002.tb00423.x

    Article  Google Scholar 

  8. Rushton, M.J.D., Grimes, R.W., Stanek, C.R., and Owens, S., Predicted pyrochlore to fluorite disorder temperature for A2Zr2O7 compositions, J. Mater. Res., 2004, vol. 19, pp. 1603–1604.https://doi.org/10.1557/jmr.2004.0231

    Article  CAS  Google Scholar 

  9. Subramanian, M.A., Aravamudan, G., and Subba Rao, G.V., Oxide pyrochlores—a review, Prog. Solid State Chem., 1983, vol. 15, pp. 55–143.https://doi.org/10.1016/0079-6786(83)90001-8

    Article  CAS  Google Scholar 

  10. Jiang, C., Stanek, C.R., Sickafus, K.E., and Uberiaga, B.P., First-principles prediction of disordering tendencies in pyrochlore oxides, Phys. Rev. B: Condens. Matter Mater. Phys., 2009, vol. 79, paper 104203.https://doi.org/10.1103/PhysRevB.79.104203

  11. Popov, V.V., Menushenkov, A.P., Yaroslavtsev, A.A., et al., Fluorite–pyrochlore phase transition in nanostructured Ln2Hf2O7 (Ln = La–Lu), J. Alloys Compd., 2016, vol. 689, pp. 669–679.https://doi.org/10.1016/j.jallcom.2016.08.019

    Article  CAS  Google Scholar 

  12. Guskov, V.N., Gavrichev, K.S., Gagarin, P.G., and Guskov, A.V., Thermodynamic functions of complex zirconia based lanthanide oxides—pyrochlores Ln2Zr2O7 (Ln = La, Pr, Sm, Eu, Gd) and fluorites Ln2O3 · 2ZrO2 (Ln = Tb, Ho, Er, Tm), Russ. J. Inorg. Chem., 2019, vol. 64, pp. 1265–1281.https://doi.org/10.1134/S0036023619100048

    Article  CAS  Google Scholar 

  13. Vaßen, R., Jarligo, M.O., Steinke, T., et al., Overview on advanced thermal barrier coatings, Surf. Coat. Technol., 2010, vol. 205, pp. 938–942.https://doi.org/10.1016/j.surfcoat.2010.08.151

    Article  CAS  Google Scholar 

  14. Clarke, D.R. and Phillpot, S.R., Thermal barrier coating materials, Mater. Today, 2005, vol. 8, pp. 22–29.https://doi.org/10.1016/s1369-7021(05)70934-2

    Article  CAS  Google Scholar 

  15. Poerschke, D.L., Jackson, R.W., and Levi, C.G., Silicate deposit degradation of engineered coatings in gas turbines: progress toward models and materials solutions, Ann. Rev. Mater. Res., 2017, vol. 47, pp. 297–330.https://doi.org/10.1146/annurev-matsci-010917-105000

    Article  CAS  Google Scholar 

  16. Yamamura, H., Electrical conductivity anomaly around fluorite–pyrochlore phase boundary, Solid State Ionics, 2003, vol. 158, pp. 359–365.https://doi.org/10.1016/s0167-2738(02)00874-3

    Article  CAS  Google Scholar 

  17. Shlyakhtina, A.V. and Shcherbakova, L.G., Polymorphism and high-temperature conductivity of Ln2M2O7 (Ln = Sm–Lu; M = Ti, Zr, Hf) pyrochlores, Solid State Ionics, 2011, vol. 192, pp. 200–204. https://doi.org/1016/j.ssi.2010.07.013

    Article  CAS  Google Scholar 

  18. Risovany, V.D., Zakharov, A.V., Muraleva, E.M., et al., Dysprosium hafnate as absorbing material for control rods, J. Nucl. Mater., 2006, vol. 355, pp. 163–170.https://doi.org/10.1016/j.jnucmat.2006.05.029

    Article  CAS  Google Scholar 

  19. Ewing, R.C., Weber, W.J., and Lian, J., Nuclear waste disposal-pyrochlore (A2B2O7): nuclear waste form for the immobilization of plutonium and “minor” actinides, J. Appl. Phys., 2004, vol. 95, pp. 5949–5971.https://doi.org/10.1063/1.1707213

    Article  CAS  Google Scholar 

  20. Kandan, R., Prabhakara Reddy, B., Panneerselvam, G., and Mudali, U.K., Enthalpy measurements on rare earth hafnates RE2O3⋅2HfO2 (s) (RE = Sm, Eu, Dy), J. Therm. Anal. Calorim., 2017, vol. 131, pp. 2687–2692.https://doi.org/10.1007/s10973-017-6802-6

    Article  CAS  Google Scholar 

  21. Lópes-Cota, F.A., Cepeda-Sánchez, N.M., Díaz-Guillén, J.A., et al., Electrical and thermophysical properties of mechanochemically obtained lanthanide hafnates, J. Am. Ceram. Soc., 2017, vol. 100, pp. 1994–2004.https://doi.org/10.1111/jace.14712

    Article  CAS  Google Scholar 

  22. Guskov, V.N., Tyurin, A.V., Guskov, A.V., et al., Thermal expansion and thermodynamic properties of gadolinium hafnate ceramics, Ceram. Int., 2020, vol. 46, pp. 12822–12827.https://doi.org/10.1016/j.ceramint.2020.02.052

    Article  CAS  Google Scholar 

  23. Kutty, K.V.G., Rajagopalan, S., Mathews, C.K., and Varadaraju, U.V., Thermal expansion behaviour of some rare earth oxide pyrochlore, Mater. Res. Bull., 1994, vol. 29, pp. 759–766.https://doi.org/10.1016/0025-5408(94)90201-1

    Article  CAS  Google Scholar 

  24. Mikuśkiewicz, M., Migas, D., and Moskal, G., Synthesis and thermal properties of zirconate, hafnate and cerate of samarium, Surf. Coat. Technol., 2018, vol. 354, pp. 66–75.https://doi.org/10.1016/j.surfcoat.2018.08.096

    Article  CAS  Google Scholar 

  25. Gagarin, P.G., Tyurin, A.V., Guskov, V.N., et al., Thermodynamic properties and thermal expansion of Tm2O3 · 2ZrO2 solid solution, Russ. J. Inorg. Chem., 2018, vol. 63, pp. 1478–1483.https://doi.org/10.1134/S0036023618110050

    Article  CAS  Google Scholar 

  26. Wieser, M.E., Atomic weights of the elements 2005 (IUPAC technical report), Pure Appl. Chem., 2006, vol. 78, pp. 2051–2066.https://doi.org/10.1351/pac200678112051

    Article  CAS  Google Scholar 

  27. Ryumin, M.A., Nikiforova, G.E., Tyurin, A.V., Khoroshilov, A.V., Kondrat’eva, O.N., Guskov, V.N., and Gavrichev, K.S., Heat capacity and thermodynamic functions of La2Sn2O7, Inorg. Mater., 2020, vol. 56, no. 1, pp. 97–104.https://doi.org/10.1134/S00201685200101148

    Article  CAS  Google Scholar 

  28. Kolomiets, T.Yu., Tel’nova, G.B., Ashmarin, A.A., Chelpanov, V.I., and Solntsev, K.A., Synthesis and sintering of submicron Nd:YAG particles prepared from carbonate precursors, Inorg. Mater., 2017, vol. 53, no. 8, pp. 874–882. https://doi.org/10.1134/S0020168517080076

    Article  CAS  Google Scholar 

  29. Gagarin, P.G., Guskov, A.V., Guskov, V.N., et al., Dysprosium orthotantalate ceramics: thermal expansion and heat capacity, Ceram. Int., 2021, vol. 47, pp. 2892–2896.https://doi.org/10.1016/j.ceramint.2020.09072

    Article  CAS  Google Scholar 

  30. Shlyakhtina, A.V., Knotko, A.V., Boguslavskii, M.V., et al., Effect of non-stoichiometry and synthesis temperature on the structure and conductivity of Ln2 + xM2 − xO7 − x/2 (Ln = Sm–Gd; M = Zr, Hf; x = 0–0.286), Solid State Ionics, 2007, vol. 17, pp. 59–66.https://doi.org/10.1016/j.ssi.2006.11.001

    Article  CAS  Google Scholar 

  31. Maier, C.G. and Kelley, K.K., An equation for representation of high temperature heat content data, J. Am. Chem. Soc., 1932, vol. 54, pp. 3243–3246.https://doi.org/10.1021/ja01347a029

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was carried out using equipment of the JRC PMR IGIC RAS. The assistance of PhD A.A. Ashmarin in HTXRD studies is kindly appreciated.

Funding

This work was supported by the Russian Science Foundation, grant no. 18-13-00025.

https://rscf.ru/project/18-13-00025.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Guskov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guskov, A.V., Gagarin, P.G., Guskov, V.N. et al. Heat Capacity and Thermal Expansion of Samarium Hafnate. Inorg Mater 57, 1015–1019 (2021). https://doi.org/10.1134/S0020168521100046

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0020168521100046

Keywords:

Navigation