Skip to main content
Log in

Preparation and Thermoelectric Properties of Zinc Antimonide

  • Published:
Inorganic Materials Aims and scope

Abstract—

We have demonstrated two processes for the synthesis of zinc antimonide powder using rapid melt cooling: melt spinning and cooling in a liquid. The elemental and phase compositions and surface morphology of hot-pressed undoped and 3 wt % In-doped β-Zn4Sb3 samples have been studied by scanning electron microscopy, X-ray diffraction, and optical microscopy, and their Seebeck coefficient, electrical conductivity, and thermal conductivity have been measured in the range 300–700 K. Indium doping has been shown to reduce the lattice thermal conductivity of the material by a factor of 1.5. The 600-K thermoelectric figure of merit of the undoped sample (ZT = 0.8) is half that of the doped sample (ZT = 1.5). We have assessed the effect of thermal cycling in the range 300–700 K on the Seebeck coefficient and electrical conductivity of the samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

Similar content being viewed by others

REFERENCES

  1. Ioffe, A.F., Poluprovodnikovye termoelementy (Semiconducting Thermoelectric Elements), Moscow: Akad. Nauk SSSR, 1960.

  2. Vuillard, G. and Hiton, J.-P., Sur les transformations des phases intermetalliques du system antimone–zinc, C. R. Acad. Sci., 1966, vol. 263, no. 17, pp. 1018–1021.

    CAS  Google Scholar 

  3. Lo, C.-W.T., Svitlyk, V., Chernyshov, D., and Mozharivskyj, Y., The updated Zn–Sb phase diagram. how to make pure Zn13Sb10 (“Zn4Sb3”), Dalton Trans., 2018, vol. 47, pp. 11512–11520.https://doi.org/10.1039/C8DT02521E

    Article  CAS  PubMed  Google Scholar 

  4. Cargnoni, F., Nishibori, E., Rabiller, P., Bertini, L., Snyder, G.J., Christensen, M., Gatti, C., and Iversen, B.B., Interstitial Zn atoms do the trick in thermoelectric zinc antimonide, Zn4Sb3: a combined maximum entropy method X-ray electron density and ab initio electronic structure study, Chem. – Eur. J., 2004, vol. 10, pp. 3861–3870.https://doi.org/10.1002/chem.200400327

    Article  CAS  PubMed  Google Scholar 

  5. Mozharivskyj, Y., Janssen, Y., Harringa, J.L., Kracher, A., Tsokol, A.O., and Miller, G.J., Zn13Sb10: a structural and Landau theoretical analysis of its phase transitions, Chem. Mater., 2006, vol. 18, pp. 822–831.https://doi.org/10.1002/chin.200615016

    Article  CAS  Google Scholar 

  6. Snyder, G.J., Christensen, M., Nishibori, E., Caillat, T., and Iversen, B.B., Disordered zinc in Zn4Sb3 with phonon-glass and electron-crystal thermoelectric properties, Nat. Mater., 2004, vol. 3, pp. 458–463.https://doi.org/10.1038/nmat.1154

    Article  CAS  PubMed  Google Scholar 

  7. Caillat, T., Fleurial, J.-P., and Borshchevsky, A., Preparation and thermoelectric properties of semiconducting Zn4Sb3, J. Phys. Chem. Solids, 1997, vol. 58, pp. 1119–1125.https://doi.org/10.1016/S0022-3697(96)00228-4

    Article  CAS  Google Scholar 

  8. Panchenko, V.P., Tabachkova, N.Yu., Ivanov, A.A., Senatulin, B.R., and Andreev, E.A., Preparation and properties of Zn4Sb3-based thermoelectric material, Semiconductors, 2017, vol. 51, no. 6, pp. 714–717.https://doi.org/10.1134/S1063782617060252

    Article  CAS  Google Scholar 

  9. Ivanova, L.D., Granatkina, Yu.V., Mal’chev, A.G., Nikhezina, I.Yu., Nikulin, D.S., Krivoruchko, S.P., Zaldastanishvili, M.I., and Sudak, N.M., Using advanced technologies for the preparation of nanoparticulate solid solutions between bismuth and antimony chalcogenides via rapid melt solidification, in Perspektivnye tekhnologii i materialy (Promising Technologies and Materials), Sevastopol’sk. Gos. Univ., 2020, pp. 70–74.

  10. Ivanova, L.D., Granatkina, Yu.V., Mal’chev, A.G., Nikhezina, I.Yu., Krivoruchko, S.P., Zaldastanishvili, M.I., Vekua, T.S., and Sudak, N.M., Preparation and thermoelectric properties of microcrystalline lead telluride, Inorg. Mater., 2020, vol. 56, no. 8, pp. 791–798. https://doi.org/10.1134/S0020168520080063

    Article  CAS  Google Scholar 

  11. Timothy, C.-W., Kolodiazhnyi, T., Song, Sh., Tseng, Yu-Ch., and Mozharivskyj, Y., Experimental survey of dopants in Zn13Sb10 thermoelectric material, Intermetallics, 2020, vol. 123, paper 106831.https://doi.org/10.1016/j.intermet.2020.106831

  12. Tapiero, M., Tarabichi, S., Gies, J.G., Noguet, C., Zielinger, J.P., Joucla, M., Loison, J.L., Robino, M., and Herion, J., Preparation and characterization of Zn4Sb3, Sol. Energy Mater., 1985, vol. 12, pp. 257–274. https://doi.org/ 90051-6https://doi.org/10.1016/0165-1633(85)

  13. Cargnoni, F., Nishibori, E., Rabiller, P., Bertini, L., Snyder, G.J., Christensen, G.J., Gatti, C., and Iversen, B.B., Interstitial Zn atoms do the trick in thermoelectric zinc antimonide, Zn4Sb3: a combined maximum entropy method X-ray electron density and ab initio electronic structure study, Chem. – Eur. J., 2004, vol. 10, pp. 3861–3870.https://doi.org/10.1002/chem.200400327

    Article  CAS  PubMed  Google Scholar 

  14. Toberer, E.S., Sasaki, K.A., Chisholm, C.R.I., Haile, S.M., Godard, W.A., and Snuder, G.J., Local structure of interstitial Zn in β-Zn4Sb3, Phys. Status Solidi RRL, 2007, vol. 1, pp. 253–255.https://doi.org/10.1002/pssr.200701168

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

We are grateful to academician V.M. Ievlev for his helpful suggestions regarding the preparation of the manuscript.

Funding

This work was supported by the Russian Federation Ministry of Science and Higher Education, state research target no. 075-00328-21-00.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. D. Ivanova.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ivanova, L.D., Granatkina, Y.V., Mal’chev, A.G. et al. Preparation and Thermoelectric Properties of Zinc Antimonide. Inorg Mater 57, 674–682 (2021). https://doi.org/10.1134/S0020168521070177

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0020168521070177

Keywords:

Navigation