Skip to main content
Log in

Interaction of Carbon Fiber with a Ti–Al Melt during Self-Propagating High-Temperature Synthesis

  • Published:
Inorganic Materials Aims and scope

Abstract—

We have studied the structuring of combustion products in the Ti–Al system upon interaction with carbon fibers during self-propagating high-temperature synthesis. The combustion products have been characterized by X-ray diffraction and scanning electron microscopy in combination with X-ray microanalysis using an energy dispersive detector. The results demonstrate the formation of a thin (~200–300 nm) TiC carbide layer on the surface of the graphite fibers. This layer is covered with a layer of nanolaminate grains of the Ti3AlC2 MAX phase. The present results can be useful in the fabrication of composite materials based on titanium aluminides reinforced with titanium carbide-coated carbon fibers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. Naidich, Ju.V., The wettability of solids by liquid metals, Prog. Surf. Membr. Sci., 1981, vol. 14, pp. 353–484.

    Article  CAS  Google Scholar 

  2. Naidich, Yu.V and Kolesnichenko, G.A., Vzaimodeistvie metallicheskikh rasplavov s poverkhnost’yu almaza i grafita (Interaction of Metallic Melts with the Surface of Diamond and Graphite), Kiev: Naukova Dumka, 1967.

    Google Scholar 

  3. Suryanarayana, C., Mechanical alloying and milling, Prog. Mater. Sci., 2001, vol. 46, no. 1, pp. 1–184.

    Article  CAS  Google Scholar 

  4. Pérez-Bustamante, R., González-Ibarra, M.J., González-Cantú, J., Estrada-Guel, I., Herrera-Ramirez, J.M., Miki-Yoshida, M., and Martinez-Sánchez, R., AA2024–CNTs composites by milling process after T6-temper condition, J. Alloys Compd., 2012, vol. 536, pp. 17–20.

    Article  Google Scholar 

  5. Poirier, D., Gauvin, R., and Drew, R., Structural characterization of a mechanically milled carbon nanotube/aluminum mixture, Composites, Part A, 2009, vol. 40, pp. 1482–1489.

    Article  Google Scholar 

  6. Kallip, K., Leparou, M., AlOgab, K., Cler, S., Deguilhem, G., Arroyo, Y., and Kwon, H., Investigation of different carbon nanotube reinforcements for fabricating bulk AlMg5 matrix nanocomposites, J. Alloys Compd., 2015, vol. 646, pp. 710–718.

    Article  CAS  Google Scholar 

  7. Liu, Z.Y., Xu, S.J., Xiao, B.L., Xue, P., Wang, W.G., and Ma, Z.Y., Effect of ball-milling time on mechanical properties of carbon nanotubes reinforced aluminum matrix composites, Composites, Part A, 2012, vol. 43, pp. 2161–2168.

    Article  CAS  Google Scholar 

  8. Fleischer, R.L., Dimiduk, D.M., and Lipsitt, H.A., Intermetallic compounds for strong high-temperature materials: status and potential, Ann. Rev. Mater. Sci., 1989, vol. 19, pp. 231–263.

    Article  CAS  Google Scholar 

  9. Seal, S., Barr, T., Sobczak, N., and Kerber, S., Microscopy and electron spectroscopic study of the interfacial chemistry in Al–Ti alloy/graphite systems, J. Mater. Sci., 1998, vol. 33, pp. 4147–4158.

    Article  CAS  Google Scholar 

  10. Witusiewicz, V.T., Hallstedt, B., Bondar, A.A., Hecht, U., Sleptsov, S.V., and Velikanova, T.Ya., Thermodynamic description of the Al–C–Ti system, J. Alloys Compd., 2015, vol. 623, pp. 480–496.

    Article  CAS  Google Scholar 

  11. Merzhanov, A.G., Yukhvid, V.I., and Borovinskaya, I.P., Self-propagating high-temperature synthesis of cast refractory inorganic compounds, Dokl. Akad. Nauk SSSR, 1980, vol. 255, no. 1, pp. 120–124.

    CAS  Google Scholar 

  12. Itin, V.I. and Naiborodenko, Yu.S., Vysokotemperaturnyi sintez intermetallicheskikh soedinenii (High-Temperature Synthesis of Intermetallic Compounds), Tomsk: Tomsk. Gos. Univ., 1989.

  13. Sychev, A.E., Busurina, M.L., Sachkova, N.V., and Vrel, D., Interaction of graphite with a Ti–Al melt during self-propagating high-temperature synthesis, Inorg. Mater., 2019, vol. 55, no. 8, pp. 780–784.

    Article  CAS  Google Scholar 

  14. https://www.quorumtech.com/__assets__/ProductMultiCats/00013/Carbon.pdf

  15. http://www.ism.ac.ru/thermo/.

  16. Merzhanov, A.G., Self-propagating high-temperature synthesis: twenty years of search and findings, Combustion and Plasma Synthesis of High-Temperature Materials, Munir, Z.A. and Holt, J.B., Eds., New York: VCH, 1990, pp. 1–53.

    Google Scholar 

  17. Lyakishev, N.P., Diagrammy sostoyaniya dvoinykh metallicheskikh sistem: Spravochnik v 3-kh tomakh (Phase Diagrams of Binary Metallic Systems: A Handbook in Three Volumes), Moscow: Mashinostroenie, 1996, vol. 1.

  18. Naguib, M., Kurtoglu, M., Presser, V., Lu, J., Niu, J., Heon, M., Hultman, L., Gogotsi, Yu., and Barsoum, M.W., Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2, Adv. Mater., 2011, vol. 23, no. 37, pp. 4248–4253.

    Article  CAS  Google Scholar 

  19. Naidich, Yu.V., Kolesnichenko, G.A., Lavrinenko, I.A., and Motsak, Ya.F., Paika i metallizatsiya sverkhtverdykh instrumental’nykh materialov (Soldering and Metallization of Superhard Tool Materials), Kiev: Naukova Dumka, 1977.

  20. Ip, S.W., Sridhara, R., Toguria, J.M., Stephenson, T.F., and Warner, A.E.M., Wettability of nickel coated graphite by aluminum, Mater. Sci. Eng., A, 1998, vol. 244, no. 1, pp. 31–38.https://doi.org/10.1016/S0921-5093(97)00823-X

    Article  Google Scholar 

  21. Hwang, Ch. and Chung, Sh., A study of combustion synthesis reaction in the Ti + C/Ti + Al system, J. Mater. Sci., 2004, vol. 39, pp. 2073–2080.

    Article  CAS  Google Scholar 

  22. Pietzka, M.A. and Schuster, J.C., Summary of constitutional data on the aluminum–carbon–titanium system, J. Phase Equilib., 1994, vol. 15, pp. 392–400.https://doi.org/10.1007/BF02647559

    Article  CAS  Google Scholar 

  23. Wang, X. and Zhou, Y., Solid–liquid reaction synthesis of layered machinable Ti3AlC2 ceramic, J. Mater. Chem., 2002, vol. 12, no. 3, pp. 455–460.https://doi.org/10.1039/b108685e

    Article  CAS  Google Scholar 

  24. Ruan, M., Ming Feng, X., Ai, T., Yu, N., and Hua, K., Microstructure and mechanical properties of TiC/Ti3AlC2 in situ composites prepared by hot pressing method, Mater. Sci. Forum, 2015, vol. 816, pp. 200–204.https://doi.org/10.4028/www.scientific.net/MSF.816.200

    Article  Google Scholar 

  25. Cornish, L., Cacciamani, G., Cupid, D., and De Keyzer, J., Aluminium–carbon—titanium, Refractory Metal Systems: Phase Diagrams, Crystallographic and Thermodynamic Data, Landolt–Börnstein – Group IV Physical Chemistry 11E1, Berlin: Springer, 2009.https://doi.org/10.1007/978-3-540-88053-0_6

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. E. Sytschev.

Additional information

Translated by O. Tsarev

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sytschev, A.E., Vadchenko, S.G., Shchukin, A.S. et al. Interaction of Carbon Fiber with a Ti–Al Melt during Self-Propagating High-Temperature Synthesis. Inorg Mater 57, 683–686 (2021). https://doi.org/10.1134/S0020168521070153

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0020168521070153

Keywords:

Navigation