Skip to main content
Log in

Structure Formation and Thermal Expansion of M0.5+xMgxZr2–x(PO4)3 (M = Cd, Sr) Phosphates

  • Published:
Inorganic Materials Aims and scope

Abstract—

M0.5+xMgxZr2–x(PO4)3 (M = Cd, Sr) phosphates have been synthesized via precipitation. In both systems, we have obtained limited solid solutions with the NaZr2(PO4)3 (NZP) structure (in the range 0 ≤ x ≤ 0.6 for M = Cd and 0 ≤ x ≤ 0.5 for M = Sr). Structure refinement of SrMg0.5Zr1.5(PO4)3 by the Rietveld method has shown that the Zr4+ and Mg2+ cations reside on framework sites, whereas Sr2+ ions occupy structural voids. The thermal expansion of the M0.5+xMgxZr2–x(PO4)3 (M = Cd, Sr) phosphates has been studied by X-ray diffraction in the temperature range 173–473 K. The results demonstrate that the incorporation of the larger (Sr2+) cations into voids in the NZP structure leads to a decrease in the magnitude of the axial linear thermal expansion coefficients. We have predicted and investigated a solid solution, Sr0.7Mg0.2Zr1.8(PO4)3, with a nearly zero thermal expansion anisotropy (0.55 × 10–6 K–1) and a small average thermal expansion coefficient (3.92 × 10–6 K–1).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. Pilonen, P.C., Friis, H., Rowe, R., and Poirier, G., Crystal structure determination of kosnarite, KZr2(PO4)3, from the Mario Pinto Mine, Jenipapo district, Itinga, Brazil, Can. Mineral., 2020, vol. 58, pp. 1–16.https://doi.org/10.3749/canmin.2000044

    Article  CAS  Google Scholar 

  2. Pet’kov, V.I., Complex phosphates formed by metal cations in oxidation states I and IV, Russ. Chem. Rev., 2012, vol. 81, no. 7, pp. 606–637.https://doi.org/10.1070/RC2012v081n07ABEH004243

    Article  CAS  Google Scholar 

  3. Yaroslavtsev, A.B. and Stenina, I.A., Complex phosphates with the NASICON structure (MxA2(PO4)3), Russ. J. Inorg. Chem., 2006, vol. 51 suppl., pp. 97–116.https://doi.org/10.1134/S0036023606130043

    Article  Google Scholar 

  4. Chourasia, R., Shrivastava, O.P., Ambashta, R.D., and Wattal, P.K., Crystal chemistry of immobilization of fast breeder reactor (FBR) simulated waste in sodium zirconium phosphate (NZP) ceramic matrix, Ann. Nucl. Energy, 2010, vol. 37, no. 2, pp. 103–112.https://doi.org/10.1016/j.anucene.2009.11.011

    Article  CAS  Google Scholar 

  5. Wagh, S.A., Chemically Bonded Phosphate Ceramics, New York: Elsevier, 2016, 2nd ed.

    Google Scholar 

  6. Sukhanov, M.V., Ermilova, M.M., Orekhova, N.V., Pet’kov, V.I., and Tereshchenko, G.F., Catalytic properties of zirconium phosphate and double phosphates of zirconium and alkali metals with a NaZr2(PO4)3 structure, Russ. J. Appl. Chem., 2006, vol. 79, no. 4, pp. 614–618.

    Article  CAS  Google Scholar 

  7. Pet’kov, V.I. and Asabina, E.A., Thermophysical properties of NZP ceramics (a review), Glass Ceram., 2004, vol. 61, nos. 7–8, pp. 233–239.https://doi.org/10.1023/B:GLAC.0000048353.42467.0a

    Article  Google Scholar 

  8. Komarneni, S. and Gould, W.W., US Patent no. 6387832B1, 2002.

  9. Brochu, R., El-Yacoubi, M., Louër, M., Serghini, A., Alami, M., and Louër, D., Crystal chemistry and thermal expansion of Cd0.5Zr2(PO4)3 and Cd0.25Sr0.25Zr2(PO4)3 ceramics, Mater. Res. Bull., 1997, vol. 32, no. 1, pp. 15–23.

    Article  CAS  Google Scholar 

  10. Zhan, L., Wang, J., Wang, J., Zhang, X., Wei, Y., and Yang, Sh., Phase evolution and microstructure of new Sr0.5Zr2(PO4)3–NdPO4 composite ceramics prepared by one-step microwave sintering, Ceram. Int., 2020, vol. 46, no. 12, pp. 19822–19826.https://doi.org/10.1016/j.ceramint.2020.05.035

    Article  CAS  Google Scholar 

  11. Rietveld, H.M., Line profiles of neutron powder-diffraction peaks for structure refinement, Acta Crystallogr., 1967, vol. 22, pp. 151–152.

    Article  CAS  Google Scholar 

  12. Kim, Y.I. and Izumi, F., Structure refinements with a new version of the Rietveld-refinement program RIETAN, J. Ceram. Soc. Jpn., 1994, vol. 102, pp. 401–404.

    Article  CAS  Google Scholar 

  13. Pauling File, Villars, P., Ed., in Inorganic Solid Phases, SpringerMaterials (Online Database), Heidelberg: Springer. https://materials.springer.com/isp/crystallographic/docs/sd_1721285.

  14. Asabina, E.A., Shatunov, V.E., Pet’kov, V.I., Borovikova, E.Yu., and Kovalskii, A.M., Synthesis and study of Cd0.5+xMxZr2–x(PO4)3 (M—Mg, Co, Mn) phosphates, Russ. J. Inorg. Chem., 2016, vol. 61, no. 7, pp. 811–816.https://doi.org/10.1134/S0036023616070020

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the Russian Foundation for Basic Research, project nos. 19-33-90075 and 18-29-12063.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. R. Perova.

Additional information

Translated by O. Tsarev

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Perova, E.R., Maiorov, P.A., Asabina, E.A. et al. Structure Formation and Thermal Expansion of M0.5+xMgxZr2–x(PO4)3 (M = Cd, Sr) Phosphates. Inorg Mater 57, 741–747 (2021). https://doi.org/10.1134/S0020168521070141

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0020168521070141

Keywords:

Navigation