Skip to main content
Log in

Radiation Resistance and Hydrolytic Stability of Y0.95Gd0.05PO4-Based Ceramics with the Xenotime Structure

  • Published:
Inorganic Materials Aims and scope

Abstract—

The Y0.95Gd0.05PO4 phosphate with the xenotime structure has been synthesized in powder form and as ceramics. Ceramics with a relative density of ~99% have been produced by spark plasma sintering. The sintering temperature was 1140°C and the sintering time was ~18 min, without isothermal holding. We have assessed the radiation resistance of the ceramics under irradiation with 132Xe26+ ions and investigated the restoration of the obtained metamict phase to a crystalline one via high-temperature heat treatment. No complete amorphization of the samples has been reached at the fluences used in this study. The calculated critical fluence is (9.2 ± 0.1) × 1014 cm–2, and the calculated latent track radius is ~2.8 nm. Hydrolytic tests have shown that the phosphate under study is stable in water under dynamic conditions. The observed Y and Gd leaching rates were Ri = 1.68 × 10–6 and 1.5 × 10–7 g/(cm2 day), respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

Similar content being viewed by others

REFERENCES

  1. Ni, Y., Hughes, J.M., and Mariano, A.N., Crystal chemistry of the monazite and xenotime structures, Am. Mineral., 1995, vol. 80, pp. 21–26.https://doi.org/10.2138/am-1995-1-203

    Article  CAS  Google Scholar 

  2. Burakov, B.E., Ojovan, M.I., and Lee, W.E., Crystalline materials for actinide immobilization, in Materials for Engineering, London: Imperial College, 2010, vol. 1.https://doi.org/10.1142/p652

  3. Liu, G.K., Lia, S.T., Beitza, J.V., and Abraham, M., Effects of self-radiation damage on electronic properties of 244Cm3+ in an orthophosphate crystal of YPO4, J. Alloys Compd., 1998, vols. 271–273, pp. 872–875.https://doi.org/10.1016/S0925-8388(98)00237-0

    Article  Google Scholar 

  4. Vance, E.R., Zhang, Y., McLeod, T., and Davis, J., Actinide valences in xenotime and monazite, J. Nucl. Mater., 2011, vol. 409, pp. 221–224.https://doi.org/10.1016/j.jnucmat.2010.12.241

    Article  CAS  Google Scholar 

  5. Structural Chemistry of Inorganic Actinide Compounds, Krivovichev, S.V., Burns, P.C., and Tananaev, I.G., Eds., Amsterdam: Elsevier, 2007.https://doi.org/10.1016/B978-0-444-52111-8.X5000-5

  6. Emden, B., Thornber, M.R., Graham, J., and Lincoln, F.J., The incorporation of actinides in monazite and xenotime from placer deposits in Western Australia, Can. Mineral., 1997, vol. 35, no. 1, pp. 95–104.

    Google Scholar 

  7. Lumpkin, G.R. and Geisler-Wierwille, T., Minerals and natural analogues, Comprehensive Nuclear Materials, Konings, R.J.M., Ed., Amsterdam: Elsevier, 2012, vol. 5, pp. 563–600.

    Google Scholar 

  8. Rafiuddin, M.R. and Grosvenor, A.P., Probing the effect of radiation damage on the structure of rare-earth phosphates, J. Alloys Compd., 2015, vol. 653, pp. 279–289.https://doi.org/10.1016/j.jallcom.2015.08.276

    Article  CAS  Google Scholar 

  9. Rafiuddin, M.R., Seydoux-Guillaume, A.-M., Deschanels, X., et al., An in-situ electron microscopy study of dual ion-beam irradiated xenotime-type ErPO4, J. Nucl. Mater., 2020, vol. 539, paper 152265.https://doi.org/10.1016/j.jnucmat.2020.152265

  10. Hikichi, Y., Ota, T., Daimon, K., and Hattori, T., Thermal, mechanical, and chemical properties of sintered xenotime-type RPO4 (R = Y, Er, Yb, or Lu), J. Am. Ceram. Soc., 1998, vol. 81, no. 8, pp. 2216–2218.https://doi.org/10.1111/j.1151-2916.1998.tb02613.x

    Article  CAS  Google Scholar 

  11. Cho, I.-S., Choi, G.K., An, J.-S., et al., Sintering, microstructure and microwave dielectric properties of rare earth orthophosphates, RePO4 (Re = La, Ce, Nd, Sm, Tb, Dy, Y, Yb), Mater. Res. Bull., 2009, vol. 44, pp. 173–178.https://doi.org/10.1016/j.materresbull.2008.03.016

    Article  CAS  Google Scholar 

  12. Havette, J., Iltis, X., Palancher, H., et al., Spark plasma sintering as an innovative process for nuclear fuel plate manufacturing, J. Nucl. Mater., 2021, vol. 543, paper 152541.https://doi.org/10.1016/j.jnucmat.2020.152541

  13. Luo, F., Tang, H., Shu, X., et al., Immobilization of simulated An3+ into synthetic Gd2Zr2O7 ceramic by SPS without occupation or valence design, Ceram. Int., 2021, vol. 47, no. 5, pp. 6329–6335.https://doi.org/10.1016/j.ceramint.2020.10.211

    Article  CAS  Google Scholar 

  14. Orlova, A., Volgutov, V., Mikhailov, D., et al., Phosphate Ca1/4Sr1/4Zr2(PO4)3 of the NaZr2(PO4)3 structure type: synthesis of a dense ceramic material and its radiation testing, J. Nucl. Mater., 2014, vol. 446, nos. 1–3, pp. 232–239.https://doi.org/10.1016/j.jnucmat.2013.11.025

    Article  CAS  Google Scholar 

  15. Rymzhanov, R.A., Medvedev, N., O’Connell, J.H., et al., Recrystallization as the governing mechanism of ion track formation, Sci. Rep., 2019, vol. 9, paper 3837.https://doi.org/10.1038/s41598-019-40239-9

  16. Gibbons, J.F., Ion implantation in semiconductors—Part II: Damage production and annealing, Proc. IEEE, 1972, vol. 60, no. 9, pp. 1062–1096.https://doi.org/10.1109/PROC.1972.8854

    Article  CAS  Google Scholar 

  17. Moll, S., Sattonnay, G., Thomé, L., et al., Swift heavy ion irradiation of pyrochlore oxides: electronic energy loss threshold for latent track formation, Nucl. Instrum. Methods Phys. Res., Sect. B, 2010, vol. 268, no. 19, pp. 2933–2936.https://doi.org/10.1016/j.nimb.2010.05.012

    Article  CAS  Google Scholar 

  18. Janse van Vuuren, A., Ibrayeva, A., Rymzhanov, R.A., et al., Latent tracks of swift Bi ions in Si3N4, Mater. Res. Express, 2020, vol. 7, no. 2, paper 025512.https://doi.org/10.1088/2053-1591/ab72d3

Download references

Funding

This work was supported by the Russian Science Foundation, project no. 16-13-10464.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. A. Mikhailov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mikhailov, D.A., Potanina, E.A., Orlova, A.I. et al. Radiation Resistance and Hydrolytic Stability of Y0.95Gd0.05PO4-Based Ceramics with the Xenotime Structure. Inorg Mater 57, 760–765 (2021). https://doi.org/10.1134/S0020168521070128

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0020168521070128

Keywords:

Navigation