Skip to main content
Log in

Heat Capacity and Thermal Expansion of Terbium Hafnate

  • Published:
Inorganic Materials Aims and scope

Abstract—

This paper presents temperature dependences of the molar heat capacity in the range 310–1360 K and lattice parameter in the range 298–1273 K for terbium hafnate with the pyrochlore structure, which has been characterized by X-ray diffraction, scanning electron microscopy, and chemical analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Andrievskaya, E.R., Phase equilibria in the refractory oxide systems of zirconia, hafnia and yttria with rare-earth oxides, J. Eur. Ceram. Soc., 2008, vol. 28, pp. 2363–2388.https://doi.org/10.1016/jeurceramsoc.2008.01.009

    Article  CAS  Google Scholar 

  2. Arsen’ev, P.A., Glushkova, V.B., Evdokimov, A.A., et al., Soedineniya redkozemel’nykh elementov. Tsirkonaty, gafnaty, niobaty, tantalaty, antimonaty (Rare-Earth Compounds: Zirconates, Hafnates, Niobates, Tantalates, and Antimonates), Moscow: Nauka, 1985.

  3. Blanchard, P.E.R., Lio, S., Kennedy, B.J., Ling, C.D., Avdeev, M., Aitken, J.B., Cowie, B.C.C., and Tadish, A., Investigating the local structure of lanthanoid hafnates Ln2Hf2O7 via diffraction and spectroscopy, J. Phys. Chem. C, 2013, vol. 117, pp. 2266–2273.https://doi.org/10.1021/jp311329q

    Article  CAS  Google Scholar 

  4. Popov, V.V., Menushenkov, A.P., Yaroslavtsev, A.A., Zubavichus, Ya.V., Gayanov, B.R., Jastrebov, A.A., Leshchev, D.S., and Chernikov, R.V., Fluorite–pyrochlore phase transition in nanostructured Ln2Hf2O7 (Ln = La – Lu), J. Alloys Compd., 2016, vol. 689, pp. 669–679. https://doi.org/101016/j.jallcom.2016.08.019

    Article  CAS  Google Scholar 

  5. Menushenkov, A.P., Popov, V.V., Zubavichus, Ya.V., and Yaroslavtsev, A.A., Local peculiarities of the nanocrystalline structure of ternary oxides Ln2Hf2O7 (Ln = Gd, Tb, Dy), J. Struct. Chem., 2016, vol. 57, pp. 1450–1458.https://doi.org/10.1134/s0022476616070210

    Article  CAS  Google Scholar 

  6. Rushton, M.J.D., Grimes, R.W., Stanek, C.R., and Owens, S., Predicted pyrochlore to fluorite disorder temperature for A2Zr2O7 compositions, J. Mater. Res., 2004, vol. 19, pp. 1603–1604.https://doi.org/10.1557/JMR.2004.0231

    Article  CAS  Google Scholar 

  7. Subramanian, M.A., Aravamudan, G., and Subba Rao, G.V., Oxide pyrochlores – a review, Prog. Solid State Chem., 1983, vol. 15, pp. 55–143.https://doi.org/10.1016/0079-6786(83)90001-8

    Article  CAS  Google Scholar 

  8. Kabanova, V.A., Popov, V.V., Zubavichus, Ya.V., Kulik, E.S., Yaroslavtsev, A.A., Chernikov, R.V., and Menushenkov, A.P., High local disorder in Tb2Hf2O7 pyrochlore oxide nanocrystals, J. Phys.: Conf. Ser., 2016, vol. 712, paper 012113.https://doi.org/10.1088/1742-6596/712/1/012113

  9. Costa, G., Harder, B.J., Wiesner, V.L., Zhu, D.M., Bansal, N., Lee, K.N., Jacobson, N.S., Kapush, D., Ushakov, S.V., and Navrotsky, A., Thermodynamics of reaction between gas-turbine ceramic coatings and ingested CMAS corrodents, J. Am. Ceram. Soc., 2019, vol. 102, pp. 2948–2964.https://doi.org/10.1111/jace.16113

    Article  CAS  Google Scholar 

  10. Fabrichnaya, O. and Seifert, H.J., Up-date of a thermodynamic database of the ZrO2–Gd2O3–Y2O3–Al2O3 system for TBC applications, J. Phase Equilib. Diffus., 2010, vol. 32, pp. 2–16.https://doi.org/10.1007/s11669-010-9815-4

    Article  CAS  Google Scholar 

  11. Anand, V.K., Opherden, L., Xu, J., Adroja, D.T., Hillier, A.D., Biswas, P.K., Herrmannsdörfer, T., Uhlarz, M., Hornung, J., Wosnitza, J., Canévet, E., and Lake, B., Evidence for a dynamical ground state in the frustrated pyrohafnate Tb2Hf2O7, Phys. Rev. B: Condens. Matter Mater. Phys., 2008, vol. 97, paper 094402.https://doi.org/10.1103/physrevb.97.094402

  12. Guskov, V.N., Tyurin, A.V., Guskov, A.V., Gagarin, P.G., Khoroshilov, A.V., and Gavrichev, K.S., Thermal expansion and thermodynamic properties of gadolinium hafnate ceramics, Ceram. Int., 2020, vol. 46, pp. 12822–12829.https://doi.org/10.1016/j.ceramint.2020.02.052

    Article  CAS  Google Scholar 

  13. Ryumin, M.A., Nikiforova, G.E., Tyurin, A.V., Khoroshilov, A.V., Kondrat’eva, O.N., Guskov, V.N., and Gavrichev, K.S., Heat capacity and thermodynamic functions of La2Sn2O7, Inorg. Mater., 2020, vol. 56, no. 1, pp. 97–104.https://doi.org/10.1134/S0020168520010148

    Article  CAS  Google Scholar 

  14. Wieser, M.E., Atomic weights of the elements 2005 (IUPAC technical report), Pure Appl. Chem., 2006, vol. 78, pp. 2051–2066.https://doi.org/10.1351/pac200678112051

    Article  CAS  Google Scholar 

  15. Gagarin, P.G., Guskov, A.V., Guskov, V.N., Tyurin, A.V., Khoroshilov, A.V., and Gavrichev, K.S., Dysprosium orthotantalate ceramics: thermal expansion and heat capacity, Ceram. Int., 2021, vol. 47, pp. 2892–2896.https://doi.org/10.1016/j.ceramint.2020.09072

    Article  CAS  Google Scholar 

  16. Popov, V.V., Zubavichus, Y.V., Menushenkov, A.P., et al., Lanthanide effect on the formation and evolution of nanocrystalline structures in Ln2Hf2O7 compounds (Ln = Sm–Dy), Russ. J. Inorg. Chem., 2015, vol. 60, no. 1, pp. 18–25.https://doi.org/10.1134/s003602361501009x

  17. Maier, C.G. and Kelley, K.K., An equation for representation of high temperature heat content data, J. Am. Chem. Soc., 1932, vol. 54, pp. 3243–3246.https://doi.org/10.1021/ja01347a029

    Article  CAS  Google Scholar 

  18. Konings, R.J.M., Benes, O., Kovacs, O.A., Manara, D., Sedmidubsky, D., Gorokhov, L.N., Iorish, V.S., Yungman, V., and Shenyavskaya, O.E., The thermodynamic properties of the f-elements and their compounds: Part 2. The lanthanide and actinide oxides, J. Phys. Chem. Ref. Data, 2014, vol. 43, no. 14, paper 013101.https://doi.org/10.1063/1.4825256

  19. Pankratz, L.B., Thermodynamic properties of elements and oxides, U.S. Bur. Mines Bull., 1982, vol. 672, p. 188.

    Google Scholar 

Download references

ACKNOWLEDGEMENTS

This work was carried out using equipment of the JRC PMR IGIC RAS. The assistance of PhD A.A. Ashmarin in HTXRD studies is kindly appreciated.

Funding

This work was supported by the Russian Science Foundation grant no. 18-13-00025, https://rscf.ru/en/project/18-13-00025/.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Guskov.

Ethics declarations

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guskov, A.V., Gagarin, P.G., Guskov, V.N. et al. Heat Capacity and Thermal Expansion of Terbium Hafnate. Inorg Mater 57, 710–713 (2021). https://doi.org/10.1134/S0020168521070074

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0020168521070074

Keywords:

Navigation