Skip to main content
Log in

Synthesis and Properties of Modified Aluminum-Containing Framework Compounds

  • Published:
Inorganic Materials Aims and scope

Abstract—

In this work, nickel- and iron-modified aluminum-containing framework compounds—highly porous stable nanomaterials—have been prepared for the first time using magnetron sputtering, an environmentally friendly method. The materials have been characterized by a variety of physicochemical methods: BET measurements, atomic force microscopy, X-ray diffraction, thermogravimetric analysis, and IR spectroscopy. We have assessed the catalytic activity of the synthesized bimetallic framework compounds for the hydrogen peroxide oxidation of an azo dye. The results demonstrate that the addition of a small amount of these catalysts leads to an increase in reaction rate constant. The nickel- and iron-modified aluminum-containing framework compounds have been shown to retain their performance for at least four cycles (with allowance for regeneration via triple treatment with ethanol). A mechanism has been proposed for the hydrogen peroxide oxidation of the dye in the presence of the synthesized metal complexes, in which hydroxyl radicals act as an oxidizing species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.

Similar content being viewed by others

REFERENCES

  1. Glover, T.G. and Mu, B., Gas Adsorption in Metal-Organic Frameworks: Fundamentals and Applications, New York: CRC, 2018.

    Book  Google Scholar 

  2. Tsivadze, A.Y., Aksyutin, O.E., Ishkov, A.G., et al., Metal-organic framework structures: adsorbents for natural gas storage, Russ. Chem. Rev., 2019, vol. 88, no. 9, pp. 925–978.https://doi.org/10.1070/RCR4873

    Article  CAS  Google Scholar 

  3. Liu, J., Chen, L., Cui, H., Zhang, L., and Su, C.-Y., Applications of metal-organic frameworks in heterogeneous supramolecular catalysis, Chem. Soc. Rev., 2014, vol. 43, pp. 6011–6061.https://doi.org/10.1039/x0xx00000x

    Article  CAS  PubMed  Google Scholar 

  4. Wang, L., Zheng, M., and Xie, Z., Nanoscale metal-organic frameworks for drug delivery: a conventional platform with new promise, J. Mater. Chem. B, 2018, vol. 6, no. 5, pp. 707–717.https://doi.org/10.1039/C7TB02970E

    Article  CAS  PubMed  Google Scholar 

  5. Jiao, L., Seow, J.Y.R., Skinner, W.S., Wang, Z.U., and Jiang, H.-L., Metal-organic frameworks: structures and functional applications, Mater. Today, 2018, pp. 1–27.https://doi.org/10.1016/j.mattod.2018.10.038

  6. Butova, V.V., Soldatov, M.A., Guda, A.A., and Lomachenko, K., Metal-organic frameworks: structure, properties, methods of synthesis and characterization, Russ. Chem. Rev., 2016, vol. 85, no. 3, pp. 280–307.https://doi.org/10.1070/RCR4554

    Article  CAS  Google Scholar 

  7. Ertas, I.E., Gulcan, M., Bulut, A., Yurderi, M., and Zahmakiran, M., Metal-organic framework (MIL-101) stabilized ruthenium nanoparticles: highly efficient catalytic material in the phenol hydrogenation, Microporous Mesoporous Mater., 2016, vol. 226, pp. 94–103.https://doi.org/10.1016/j.micromeso.2015.12.048

    Article  CAS  Google Scholar 

  8. Tanabe, K.K. and Cohen, S.M., Postsynthetic modification of metal-organic frameworks—a progress report, Chem. Soc. Rev., 2011, vol. 40, no. 2, pp. 498–519.https://doi.org/10.1039/c0cs00031k

    Article  CAS  PubMed  Google Scholar 

  9. Kou, W.-T., Yang, C.-X., and Yan, X.-P., Post-synthetic modification of metal-organic frameworks for chiral gas chromatography, J. Mater. Chem. A, 2018, vol. 6, no. 37, pp. 17861–17866.https://doi.org/10.1039/C8TA06804F

    Article  CAS  Google Scholar 

  10. Mandal, S., Natarajan, S., Mani, P., and Pankajakshan, A., Post-synthetic modification of metal-organic frameworks toward applications, Adv. Funct. Mater., 2020, vol. 30, no. 44. https://doi.org/10.1002/adfm.202006291

  11. Smith, S.J.D., Ladewig, B.P., Hill, A.J., Lau, C.H., and Hill, M.R., Post-synthetic Ti exchanged UiO-66 metal-organic frameworks that deliver exceptional gas permeability in mixed matrix membranes, Sci. Rep., 2015, vol. 5, pp. 7823–7829.https://doi.org/10.1038/srep07823

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Yin, Z., Wan, S., Yang, J., et al., Recent advances in post-synthetic modification of metal-organic frameworks: new types and tandem reactions, Coord. Chem. Rev., 2019, vol. 378, pp. 500–512.https://doi.org/10.1016/j.ccr.2017.11.015

    Article  CAS  Google Scholar 

  13. Yang, S., Peng, L., and Sun, D.T., A new post-synthetic polymerization strategy makes metal-organic frameworks more stable, Chem. Sci., 2019, vol. 10, no. 17, pp. 4542–4549.https://doi.org/10.1039/C9SC00135B

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Gorberg, B.L., Ivanov, A.A., Mamontov, O.V., Stegnin, V.A., and Titov, V.A., Modification of fabrics with nanocoatings produced by magnetron ion-plasma sputtering, Ross. Khim. Zh., 2011, vol. 55, no. 3, pp. 7–13.

    CAS  Google Scholar 

  15. Li, N., Lu, W., Pei, K., Yao, Y., and Chen, W., Formation of high-valent cobalt–oxo phthalocyanine species in a cellulose matrix for eliminating organic pollutants, Appl. Catal., B, 2015, no. 163, pp. 105–112.https://doi.org/10.1016/j.apcatb.2014.07.056

  16. Luo, M., Lv, L., Deng, G., Li, X., and Xu, A., The mechanism of bound hydroxyl radical formation and degradation pathway of acid orange II in Fenton-like Co2+–HCO3-system, Appl. Catal., A, 2014, no. 469, pp. 198–205.https://doi.org/10.1016/j.apcata.2013.09.045

  17. Guo, F., Xu, J.Q., and Jun, L., Kinetics studies for catalytic oxidation of Methyl Orange over the heterogeneous Fe/beta catalysts, Adv. Mater. Res., 2013, nos. 807–809, pp. 361–364.https://doi.org/10.4028/www.scientific.net/AMR.807-809.361

  18. Qin, L., Zhang, G., Fan, Z., Guo, X., and Liu, M., Templated fabrication of hierarchically porous Fe–Ti bimetallic solid superacid for efficient photochemical oxidation of azo dyes under visible light, Chem. Eng. J., 2014, no. 244, pp. 296–306.https://doi.org/10.1016/j.cej.2014.01.082

  19. Cheng, G., Huang, X., Zhang, H., Hu, Y., and Kan, C., Preparation of P(St-co-MAA)/CeO2 composite microspheres via surface carboxyl oxidation followed by in situ chemical deposition of CeO2 and their catalytic application on oxidative degradation of Methyl Orange, RSC Adv., 2014, vol. 49, no. 55, pp. 29042–29049.https://doi.org/10.1039/C4RA01360C

    Article  Google Scholar 

  20. Vlasova, E.A., Naidenko, E.V., Kudrik, E.V., Makarova, A.S., and Makarov, S.V., Efficient synthesis of aluminum- and zinc-containing metal–organic frameworks, Inorg. Mater., 2015, vol. 51, no. 3, pp. 236–240.https://doi.org/10.1134/S0020168515020181

    Article  CAS  Google Scholar 

  21. Nakamoto, K., Infrared and Raman Spectra of Inorganic and Coordination Compounds, Part B: Applications in Coordination, Organometallic and Bioinorganic Chemistry, New York: Wiley, 2009, 6th ed.

    Google Scholar 

  22. Loiseau, T., Serre, C., Huguenard, C., Fink, G., Taulelle, F., Henry, M., Bataille, T., and Férey, G., A rationale for the large breathing of the porous aluminum terephthalate (MIL-53) upon hydration, Chem. – Eur. J., 2004, no. 10, pp. 1373–1382.https://doi.org/10.1002/chem.200305413

  23. Liu, J., Zang, F., Zou, X., Yu, G., Zhao, N., Fan, S., and Zhu, G., Environmentally friendly synthesis of highly hydrophobic and stable MIL-53 MOF nanomaterials, Chem. Commun., 2013, no. 49, pp. 7430–7432.https://doi.org/10.1039/C3CC42287A

  24. Rösler, C., Esken, D., Wiktor, C., and Kobayashi, H., Encapsulation of bimetallic nanoparticles into a metal-organic framework: preparation and microstructure characterization of Pd/Au@ZIF-8, Eur. J. Inorg. Chem., 2014, no. 32, pp. 5514–5521.https://doi.org/10.1002/ejic.201402409

  25. Gotthardt, M.A., Schoch, R., Wolf, S., Bauer, M., and Kleist, W., Synthesis and characterization of bimetallic metal-organic framework Cu–Ru-BTC with HKUST-1 structure, Dalton Trans., 2015, no. 44, pp. 2052–2056.https://doi.org/10.1039/c4dt02491e

  26. Dhanya, I. and Sasi, B., A study on the thermodynamics of grain growth in R.F. magnetron sputtered NiO thin films, J. Coat., 2013, vol. 2013, pp. 1–6.https://doi.org/10.1155/2013/981515

    Article  CAS  Google Scholar 

  27. Smirnov, A., Hausner, D., Laffers, R., and Schoonen, M., Abiotic ammonium formation in the presence of Ni–Fe metals and alloys and its implications for the hadean nitrogen cycle, Geochem. Trans., 2008, vol. 9, no. 5, pp. 1–20.https://doi.org/10.1186/1467-4866-9-5

    Article  CAS  Google Scholar 

  28. Flox, C., Ammar, S., Arias, C., Brillas, E., Vargas-Zaval, A., and Abdehdi, R., Electro-Fenton and photoelectro-Fenton degradation of indigo carmine in acidic aqueous medium, Appl. Catal., B, 2006, no. 67, pp. 93–104.https://doi.org/10.1016/j.apcatb.2006.04.020

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. A. Vlasova.

Additional information

Translated by O. Tsarev

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vlasova, E.A., Valueva, K.A., Solomkina, Y.S. et al. Synthesis and Properties of Modified Aluminum-Containing Framework Compounds. Inorg Mater 57, 358–366 (2021). https://doi.org/10.1134/S0020168521040154

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0020168521040154

Keywords:

Navigation