Skip to main content
Log in

Controlling the Sorption Activity of Clinoptilolites with Mechanical Activation

  • Published:
Inorganic Materials Aims and scope

Abstract—

We have studied the effect of the phase composition of clinoptilolite rocks and the specific mechanical energy delivered to samples in a vibratory attritor on their physical properties and oil sorption capacity. Mechanical activation in air has been shown to cause amorphization, transformation of “zeolitic” water into “hydroxyl” water, and an electron density redistribution in the Al–O–Si framework of the clinoptilolite. Milling to a specific mechanical energy of 2.16 kJ/g leads to the formation of molecularly dense aggregates, which shows up as a decrease in specific surface area, demonstrated by BET measurements. An optimal approach for raising oil sorption capacity is mechanical activation of clinoptilolite–stilbite rock in air to a specific mechanical energy of 5.04 kJ/g.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Breck, D.W., Zeolite Molecular Sieves: Structure, Chemistry, and Use, Breck, D.W., Ed., New York: Wiley, 1974.

    Google Scholar 

  2. Kussainova, M.Zh., Jussipbekov, U.Z., and Pas, S., Structural investigation of raw clinoptilolite over the Pb2+ adsorption process from phosphoric acid, J. Mol. Struct., 2019, vol. 1184, pp. 49–58.

    Article  CAS  Google Scholar 

  3. Obuzdina, M.V. and Rush, E.A., Sorption characteristics of modified zeolites studied by infrared and energy dispersive X-ray spectroscopy techniques, Vestn. Tekhnol. Univ., 2019, vol. 22, no. 3, pp. 2–29.

    Google Scholar 

  4. Kazemi, M. and Falamaki, C., Study on the kinetics and mechanism of the catalytic oxidation reaction of Mn2+ using clinoptilolite supported δ-MnO2 nanocatalyst, Proc. Saf. Environ. Prot., Part B, 2015, vol. 94, no. 100, pp. 65–71.

    CAS  Google Scholar 

  5. Nikashina, V.A., Streletsky, A.N., Kolbanev, I.V., Meshkova, I.V., Grinev, V.G., Serova, I.B., Yusupov, T.S., and Shumskaya, L.G., Effect of mechanical activation on the properties of natural zeolites, Inorg. Mater., 2011, vol. 47, no. 12, pp. 1341–1346.https://doi.org/10.1134/S0020168511120144

    Article  CAS  Google Scholar 

  6. Morozova, N.N. and Kais, Kh.A., Improving the reactivity of zeolite-containing cements by mechanical activation, Vestn. Tekhnol. Univ., 2016, vol. 19, no. 14, pp. 79–82.

    CAS  Google Scholar 

  7. Bebiya, A.G., Gulyaev, P.Yu., and Milyukova, I.V., Effect of specific surface area of particles on sorption characteristics of zeolites occurring at different levels, Vestn. Yugorsk. Gos. Univ., 2014, no. 2 (33), pp. 15–23.

  8. Bohács, K., Faitli, J., Bokányi, L., and Mucsi, G., Control of natural zeolite properties by mechanical activation in stirred media mill, Arch. Metall. Mater., 2017, vol. 62, no. 2B, pp. 1399–1406. https://doi.org/10.1515/amm-2017-0216

    Article  Google Scholar 

  9. Avvakumov, E.G., Mekhanicheskie metody aktivatsii khimicheskikh protsessov (Mechanical Methods for Activation of Chemical Processes), Novosibirsk: Nauka, 1986.

  10. Butyagin, P.Yu. and Pavlichev, I.K., Determination of energy yield of mechanochemical reactions, React. Solids, 1986, vol. 1, pp. 361–365.

    Article  CAS  Google Scholar 

  11. Davydova, M.L. and Shadrinov, N.V., Polymer–elastomer nanocomposites based on butadiene nitrile rubber, ultra high molecular weight polyethylene, and a natural zeolite, Perspekt. Mater., 2010, no. 9, pp. 283–288.

  12. Juhasz, A.Z. and Opoczky, L., Mechanical Activation of Minerals by Grinding Pulverizing and Morphology of Particles, New York: Halsted, 1990.

    Google Scholar 

  13. Jha, V.K. and Hayashi, S., Modification on natural clinoptilolite zeolite for its \({\text{NH}}_{{\text{4}}}^{{\text{ + }}}\) retention capacity, J. Hazard. Mater., 2009, no. 169, pp. 29–35.https://doi.org/10.1016/j.jhazmat.2009.03.052

  14. Bochács, K., Kristály, F., and Mucsi, G., The influence of mechanical activation of the nanostructure of zeolite, J. Mater. Sci., 2018, vol. 53, no. 19, pp. 13779–13789.https://doi.org/10.1007/s10853-018-2502-2

    Article  CAS  Google Scholar 

  15. Bandura, L., Panek, R., and Franus, W., The use of clinoptilolite and synthetic zeolites for removal of petroleum substances, Visn. Nats. Univ. L’vivs. Politekh., 2014, no. 781, pp. 9–16.

  16. Koval’, L.M., Korobitsina, L.L., and Vosmerikov, A.V., Sintez, fiziko-khimicheskie i kataliticheskie svoistva vysokokremnezemnykh tseolitov (Synthesis, Physicochemical Properties of High-Silica Zeolites), Tomsk: Tomsk. Gos. Univ., 2001.

  17. Eremin, I.S., Development of a sugarcane-based sorbent, Ekol. Prom–st. Ross., 2017, vol. 21, no. 10, pp. 14–17.

    Google Scholar 

  18. Khodakov, G.S., Physicochemical mechanics of technological processes for materials processing, Ross. Khim. Zh., 2000, vol. 44, no. 3, pp. 93–107.

    CAS  Google Scholar 

  19. Sirotkina, E.E. and Novoselova, L.Yu., Materials for adsorption of crude oil and derivatives from water, Khim. Interesah Ustoich. Razvit., 2005, vol. 13, pp. 359–377.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. N. Dabizha.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dabizha, O.N., Derbeneva, T.V., Khamova, T.V. et al. Controlling the Sorption Activity of Clinoptilolites with Mechanical Activation. Inorg Mater 57, 399–408 (2021). https://doi.org/10.1134/S0020168521040038

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0020168521040038

Keywords:

Navigation