Skip to main content
Log in

Thermal Stability of Compact Pyrophoric Nickel Nanopowder Samples after Passivation

  • Published:
Inorganic Materials Aims and scope

Abstract—

The use of nanopowders implies the ability to safely store them without changes in their physicochemical parameters ensured by passivation. In this work, we have determined the thermal stability range in air for compact samples of different diameters prepared from pyrophoric nickel nanopowders and then passivated. The results demonstrate that compact samples prepared from nickel nanopowder can be safely stored in air at temperatures of up to about 200°C without additional oxidation, which points to their high thermal stability. The lack of a noticeable heat release during slow heating to 200°C and the presence of only Ni in both the passivated and heat-treated samples according to X-ray diffraction data suggest that the oxide layer is very thin or that there are noncrystalline oxide phases. The observed uniform oxygen and nickel distributions over fracture surfaces of samples after heating suggests that their interaction with air during both the passivation process and heating to temperatures on the order of 200°C is a bulk process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. Bouillard, J., Vignes, A., Dufaud, O., Perrin, L., and Thomas, D., Ignition and explosion risks of nanopowders, J. Hazard. Mater., 2010, vol. 181, nos. 1–3, pp. 873–880.https://doi.org/10.1016/j.jhazmat.2010.05.094

    Article  CAS  PubMed  Google Scholar 

  2. Pivkina, A., Ulyanova, P., Frolov, Y., Zavyalov, S., and Schoonman, J., Nanomaterials for heterogeneous combustion, Propellants, Explosives, Pyrotech., 2004, vol. 29, no. 1, pp. 39–48.https://doi.org/10.1002/prep.200400025

    Article  CAS  Google Scholar 

  3. Hosokawa, M., Nogi, K., Naito, M., and Yokoyama, T., Nanoparticle Technology Handbook, New York: Elsevier, 2007.

    Google Scholar 

  4. Rubtsov, N.M., Seplyarskii, B.S., and Alymov, M.I., Ignition and Wave Processes in Combustion of Solids, New York: Springer, 2017.

    Book  Google Scholar 

  5. Flannery, M., Desai, T.G., Matsoukas, T., Lotfizadeh, S., and Oehlschlaeger, M.A., Passivation and stabilization of aluminum nanoparticles for energetic materials, J. Nanomater., 2008, vol. 2015, pp. 185–199.https://doi.org/10.1155/2015/682153

    Article  CAS  Google Scholar 

  6. Meziani, M.J., Bunker, C.E., Lu, F., et al., Formation and properties of stabilized aluminum nanoparticles, ACS Appl. Mater. Interfaces, 2009, vol. 1, pp. 703–709.https://doi.org/10.1021/am800209m

    Article  CAS  PubMed  Google Scholar 

  7. Nanoparticles: Synthesis, Stabilization, Passivation, and Functionalization, Nagarajan, R. and Hatton, T.A., Eds., ACS Symp. Ser., vol. 996, Washington, DC: Am. Chem. Soc., 2008.

    Google Scholar 

  8. Alymov, M.I., Rubtsov, N.M., Seplyarskii, B.S., Zelensky, V.A., Ankudinov, A.B., Kovalev, I.D., Kochetkov, R.A., Shchukin, A.S., Petrov, E.V., and Kochetov, N.A., Synthesis of nickel nanoparticles with controlled pyrophoricity and average size, Dokl. Chem., 2019, vol. 484, no. 1, pp. 19–23.https://doi.org/10.1134/S0012500819010014

    Article  CAS  Google Scholar 

  9. Alymov, M.I., Rubtsov, N.M., Seplyarskii, B.S., Kochetkov, R.A., Zelensky, V.A., and Ankudinov, A.B., Combustion and passivation of nickel nanoparticles, Mendeleev Commun., 2017, vol. 27, no. 6, pp. 631–633.https://doi.org/10.1016/j.mencom.2017.11.032

    Article  CAS  Google Scholar 

  10. Alymov, M.I., Rubtsov, N.M., Seplyarskii, B.S., Zelensky, V.A., and Ankudinov, A.B., Passivation of iron nanoparticles at subzero temperatures, Mendeleev Commun., 2017, vol. 27, no. 5, pp. 482–484.https://doi.org/10.1016/j.mencom.2017.09.017

    Article  CAS  Google Scholar 

  11. Seplyarskii, B.S., Ivleva, T.P., and Alymov, M.I., Macrokinetic analysis of passivation of pyrophoric powders, Dokl. Chem., 2018, vol. 478, no. 3, pp. 23–26.https://doi.org/10.1134/S0012501618010062

    Article  CAS  Google Scholar 

  12. Dong, S., Hou, P., Cheng, H., Yang, H., and Zou, G., Fabrication of intermetallic NiAl by self-propagating high-temperature synthesis reaction using aluminium nanopowder under high pressure, J. Phys.: Condens. Matter, 2002, vol. 14, pp. 11023–11030.https://doi.org/10.1088/0953-8984/14/44/421

    Article  CAS  Google Scholar 

  13. Hunt, E.M. and Pantoya, M.L., Ignition dynamics and activation energies of metallic thermites: from nano- to micron-scale particulate composites, J. Appl. Phys., 2005, vol. 98, paper 034909.https://doi.org/10.1063/1.1990265

  14. Rahman, T., Mireles, K., and Gomez Chavez, J.J., High temperature physical and chemical stability and oxidation reaction kinetics of Ni–Cr nanoparticles, J. Phys. Chem. C, 2017, vol. 121, no. 7, pp. 4018–4028.https://doi.org/10.1021/acs.jpcc.6b11560

    Article  CAS  Google Scholar 

  15. Kaisersberger, E., Thermoanalytical characterization of nanomaterials, in New Research Trends in Materials Science, Sibiu: ARM-5, 2007.

  16. Kalska-Szostko, B., Wykowska, U., Satul, D., and Nordblad, P., Thermal treatment of magnetite nanoparticles, Beilstein J. Nanotechnol., 2015, vol. 6, pp. 1385–1396.https://doi.org/10.3762/bjnano.6.143

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Dean, J.G., Thermal decomposition of nickel formate, Ind. Eng. Chem. Soc., 1952, vol. 44, pp. 985–990.

    Article  Google Scholar 

  18. Alymov, M.I., Vadchenko, S.G., Suvorova, E.V., Zelenskii, V.A., and Ankudinov, A.B., Effect of the density of iron nanopowders on the parameters of their ignition during heating in air, Dokl. Phys. Chem. A, 2019, vol. 488, no. 4, pp. 143–145.https://doi.org/10.1134/S0012501619100014

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the Russian Science Foundation, project no. 16-13-00013P.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. I. Alymov.

Additional information

Translated by O. Tsarev

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alymov, M.I., Seplyarskii, B.S., Vadchenko, S.G. et al. Thermal Stability of Compact Pyrophoric Nickel Nanopowder Samples after Passivation. Inorg Mater 57, 351–357 (2021). https://doi.org/10.1134/S0020168521040014

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0020168521040014

Keywords:

Navigation