Skip to main content
Log in

Thermomechanical and Electrical Properties of Pr1 – xSrxFe0.8Co0.2O3 (x = 0.3 and 0.4) and Composites Based on Them

  • Published:
Inorganic Materials Aims and scope

Abstract—

Pr1 – xSrxFe0.8Co0.2O3 (PSFC) (x = 0.3, 0.4) materials and composites based on them are thought to be promising cathode materials for solid oxide fuel cells. The PSFC powders with micron-sized particles were prepared by self-propagating high-temperature synthesis. Zr0.84Y0.16O2 – δ (YSZ) and Ce0.73Gd0.27O2 – δ (GDC) nanopowders were used as a second component of the composites. It was found that at 1000°C PSFC reacts with the YSZ electrolyte to form SrZrO3, whereas there is no chemical interaction with GDC even at 1200°C. The electrical conductivity of the PSFC with x = 0.4 has been shown to be more than twice that of the material with x = 0.3. Herewith the increase of the Sr concentration in the PSFC leads to an increase of its thermal expansion coefficient (TEC), which exceeds that of GDC. The formation of PSFC/GDC composites makes it possible to achieve a better match in thermal expansion and sintering kinetics between the cathode and electrolyte materials. However, the electrical conductivity of the studied composites is a factor of 2–5 lower than that of the initial PSFC materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Wachsman, E.D. and Lee, K.T., Lowering the temperature of solid oxide fuel cells, Science, 2011, vol. 334, no. 6058, pp. 935–939.https://doi.org/10.1126/science.1204090

    Article  CAS  PubMed  Google Scholar 

  2. Adler, S.B., Factors governing oxygen reduction in solid oxide fuel cell cathodes, Chem. Rev., 2004, vol. 104, no. 10, pp. 4791–4843.https://doi.org/10.1021/cr020724o

    Article  CAS  PubMed  Google Scholar 

  3. Mahato, N., Banerjee, A., Gupta, A., et al., Progress in material selection for solid oxide fuel cell technology: a review, Prog. Mater. Sci., 2015, vol. 72, pp. 141–337.https://doi.org/10.1016/j.pmatsci.2015.01.001

    Article  CAS  Google Scholar 

  4. Tsipis, E.V. and Kharton, V.V., Electrode materials and reaction mechanisms in solid oxide fuel cells: a brief review, J. Solid State Electron., 2008, vol. 12, pp. 1367–1391.https://doi.org/10.1007/s10008-007-0468-0

    Article  CAS  Google Scholar 

  5. Esquirol, A., Brandon, N.P., Kilner, J.A., and Mogensen, M., Electrochemical characterization of La0.6Sr0.4Co0.2Fe0.8O3 cathodes for intermediate-temperature SOFCs, J. Electrochem. Soc., 2004, vol. 151, no. 11, pp. A1847–A1855.https://doi.org/10.1149/1.1799391

    Article  CAS  Google Scholar 

  6. Jiang, S.P., Development of lanthanum strontium cobalt ferrite perovskite electrodes of solid oxide fuel cells – a review, Int. J. Hydrogen Energy, 2019, vol. 44, no. 14, pp. 7448–7493.https://doi.org/10.1016/j.ijhydene.2019.01.212

    Article  CAS  Google Scholar 

  7. Nikonov, A.V., Kuterbekov, K.A., Bekmyrza, K.Zh., and Pavzderin, N.B., A brief review of conductivity and thermal expansion of perovskite-related oxides for SOFC cathode, Eurasian J. Phys. Funct. Mater., 2018, vol. 2, no. 3, pp. 274–292.https://doi.org/10.29317/ejpfm.2018020309

    Article  Google Scholar 

  8. Kostogloudis, G.Ch. Tsiniarakis, G., et al., Chemical reactivity of perovskite oxide SOFC cathodes and yttria stabilized zirconia, Solid State Ionics, 2000, vol. 135, nos. 1–4, pp. 529–535.https://doi.org/10.1016/S0167-2738(00)00433-1

    Article  CAS  Google Scholar 

  9. Kindermann, L., Das D., Nickel, H., and Hilpert, K., Chemical compatibility of the LaFeO3 base perovskites (La0.6Sr0.4)zFe0.8M0.2O3 – δ (z = 1, 0.9; M = Cr, Mn, Co, Ni) with yttria stabilized zirconia, Solid State Ionics, 1996, vol. 89, nos. 3–4, pp. 215–220.https://doi.org/10.1016/0167-2738(96)00366-9

    Article  CAS  Google Scholar 

  10. Sakaki, Y., Takeda, Y., Kato, A., et al., Ln1 – xSrxMnO3 (Ln = Pr, Nd, Sm and Gd) as the cathode material for solid oxide fuel cells, Solid State Ionics, 1999, vol. 118, nos. 3–4, pp. 187–194.https://doi.org/10.1016/S0167-2738(98)00440-8

    Article  CAS  Google Scholar 

  11. Qiu, L., Ichikawa, T., Hirano, A., et al., Ln1 – xSrxCo1 – y-FeyO3 – d (Ln = Pr, Nd, Gd; x = 0.2, 0.3) for the electrodes of solid oxide fuel cells, Solid State Ionics, 2003, vol. 158, nos. 1–2, pp. 55–65.https://doi.org/10.1016/S0167-2738(02)00757-9

    Article  CAS  Google Scholar 

  12. Park, K., Lee, C., Bae, J., and Yoo, Y., Structural and electrochemical properties of Pr0.3Sr0.7Co0.3Fe0.7O3 – δ cathode for IT-SOFC, Int. J. Hydrogen Energy, 2009, vol. 34, no. 16, pp. 6852–6860.https://doi.org/10.1016/j.ijhydene.2009.05.138

    Article  CAS  Google Scholar 

  13. Serra, J.M. Vert, V.B., et al., Screening of A-substitution in the system A0.68Sr0.3Fe0.8Co0.2O3 – δ for SOFC cathodes, J. Electrochem. Soc., 2008, vol. 155, no. 2, pp. B207–B214.https://doi.org/10.1149/1.2818766

    Article  CAS  Google Scholar 

  14. Guo, Y.-Q., Yin, Y.-M., Tong, Z., et al., Impact of synthesis technique on the structure and electrochemical characteristics of Pr0.6Sr0.4Co0.2Fe0.8O3 – δ (PSCF) cathode material, Solid State Ionics, 2011, vol. 193, no. 1, pp. 18–22.https://doi.org/10.1016/j.ssi.2011.03.002

    Article  CAS  Google Scholar 

  15. Pinedo, R., De Larramendi, I.R., Khavrus, V.O., et al., Mo doped Pr0.4Sr0.6Co0.2Fe0.8O3 – δ cathode material with high catalytic activity for intermediate-temperature solid oxide fuel cells, Electrochim. Acta, 2014, vol. 146, no. 10, pp. 591–597.https://doi.org/10.1016/j.electacta.2014.08.154

    Article  CAS  Google Scholar 

  16. Murray, E.P. and Barnett, S.A., (La,Sr)MnO3–(Ce,Gd)O2 – δ composite cathodes for solid oxide fuel cells, Solid State Ionics, 2001, vol. 143, nos. 3–4, pp. 265–273.https://doi.org/10.1016/j.electacta.2014.08.154

    Article  CAS  Google Scholar 

  17. Murray, E.P., Sever, M.J., and Barnett, S.A., Electrochemical performance of (La,Sr)(Co,Fe)O3–(Ce,Gd)O3 composite cathodes, Solid State Ionics, 2002, vol. 148, nos. 1–2, pp. 27–34.https://doi.org/10.1016/S0167-2738(02)00102-9

    Article  Google Scholar 

  18. Budiman, R.A., Hashimoto, S., Fujimaki, Y., et al., Evaluation of electrochemical properties of LaNi0.6Fe0.4O3 – δ–Ce0.9Gd0.1O1.95 composite as air electrode for SOFC, Solid State Ionics, 2019, vol. 332, pp. 70–76.https://doi.org/10.1016/j.ssi.2018.12.023

    Article  CAS  Google Scholar 

  19. Lyskov, N.V., Galin, M.Z., Kostretsova, N.B., Eliseeva, G.M., et al., Electrochemical properties of composite cathode materials Pr1.95La0.05CuO4–Ce0.9Gd0.1O1.95 for intermediate temperature solid oxide fuel cells, Russ. J. Electrochem., 2018, vol. 54, no. 6, pp. 527–532.https://doi.org/10.1134/S1023193518060137

    Article  CAS  Google Scholar 

  20. Vert, V.B., Solis, C., and Serra, J.M., Electrochemical properties of PSFC–BCYb composites as cathodes for proton conducting solid oxide fuel cells, Fuel Cells, 2011, vol. 11, no. 1, pp. 81–90.https://doi.org/10.1002/fuce.201000090

    Article  CAS  Google Scholar 

  21. Patro, P.K., Delahaye, T., and Bouyer, E., Development of Pr0.58Sr0.4Fe0.8Co0.2O3 – δ–GDC composite cathode for solid oxide fuel cell (SOFC) application, Solid State Ionics, 2010, vol. 181, nos. 29–30, pp. 1378–1386.https://doi.org/10.1016/j.ssi.2010.07.004

    Article  CAS  Google Scholar 

  22. Pinedo, R., De Larramendi, I.R., Khavrus, V.O., et al., Microstructural improvements of the gradient composite material Pr0.6Sr0.4Fe0.8Co0.2O3/Ce0.8Sm0.2O1.9 by employing vertically aligned carbon nanotubes, Int. J. Hydrogen Energy, 2014, vol. 39, no. 8, pp. 4074–4080.https://doi.org/10.1016/j.ijhydene.2013.05.085

    Article  CAS  Google Scholar 

  23. Ivanov, M., Osipov, V., Kotov, Yu., et al., Laser synthesis of oxide nanopowders, Adv. Sci. Technol., 2006, vol. 45, pp. 291–296.https://doi.org/10.4028/www.scientific.net/AST.45.291

    Article  CAS  Google Scholar 

  24. Pinedo, R., De Larramendi, I.R., De Aberasturi, D.J., et al., Effect of the strontium content on the electrochemical performance of the perovskite-type Pr1 – xSrxFe0.8Co0.2O3 oxides, ECS Trans., 2011, vol. 35, no. 1, pp. 2183–2190.https://doi.org/10.1149/1.3570211

    Article  CAS  Google Scholar 

  25. Tu, H.Y., Takeda, Y., Imanishi, N., and Yamamoto, O., Ln0.4Sr0.6Co0.8Fe0.2O3 – δ (Ln = La, Pr, Nd, Sm, Gd) for the electrode in solid oxide fuel cells, Solid State Ionics, 1999, vol. 117, nos. 3–4, pp. 277–281.https://doi.org/10.1016/S0167-2738(98)00428-7

    Article  CAS  Google Scholar 

  26. Xu, Q., Huang, D., Chen, W., Zhang, F., and Wang, B., Structure, electrical conducting and thermal expansion properties of Ln0.6Sr0.4Co0.2Fe0.8O3 (Ln = La, Pr, Nd, Sm) perovskite-type complex oxides, J. Alloys. Compd., 2007, vol. 429, nos. 1–2, pp. 34–39.https://doi.org/10.1016/j.jallcom.2006.04.005

    Article  CAS  Google Scholar 

  27. Oygarden, V., Lein, H.L., and Grande, T., Structure, thermal expansion and electrical conductivity of Nb-substituted LaCoO3, J. Solid State Chem., 2012, vol. 192, pp. 246–254.https://doi.org/10.1016/j.jssc.2012.04.026

    Article  CAS  Google Scholar 

  28. Tai, L.-W., Nasrallah, M.M., Anderson, H.U., et al., Structure and electrical properties of La1 – xSrxCo1 – yFeyO3. Part 2. The system La1 – xSrxCo0.2Fe0.8O3, Solid State Ionics, 1995, vol. 76, nos. 3–4, pp. 273–283.https://doi.org/10.1016/0167-2738(94)00245-N

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

We are grateful to O.I. Gyrdasova for synthesizing the cathode materials and to A.I. Medvedev for the X-ray diffraction characterization of the samples.

Funding

This work was supported by the Russian Federation Ministry of Science and Higher Education (state research target for the Russian Academy of Sciences) and the Ministry of Education and Science of the Republic of Kazakhstan (targeted science and technology program Hydrogen Energy Development and Technology in the Republic of Kazakhstan, contract no. 307, March 30, 2018)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Nikonov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nikonov, A.V., Pavzderin, N.B., Khrustov, V.R. et al. Thermomechanical and Electrical Properties of Pr1 – xSrxFe0.8Co0.2O3 (x = 0.3 and 0.4) and Composites Based on Them. Inorg Mater 57, 316–323 (2021). https://doi.org/10.1134/S0020168521030110

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0020168521030110

Keywords:

Navigation