Skip to main content
Log in

Carbosilicothermic Synthesis of Ti3SiC2–TiB2–SiC Ceramic Composites from Leucoxene Concentrate

  • Published:
Inorganic Materials Aims and scope

Abstract—

We examine general aspects of the formation of Ti3SiC2–TiB2–SiC ceramic composites during vacuum carbosilicothermic reduction of titanium oxide mineral raw materials (leucoxene concentrate from the Yaregskoe occurrence) in the presence of B4C as a boron-containing additive, with SiC as a reducing agent. The effect of starting-mixture composition on the phase composition of the reduction product and the formation of minor phases is analyzed. We demonstrate that, with increasing B4C concentration in the starting mixture, the fraction of the forming TiB2 rises systematically, reaching 48 vol %.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. Barsoum, M.W., MAX Phases: Properties of Machinable Carbides and Nitrides, Weinheim: Wiley–VCH, 2013.https://doi.org/10.1002/9783527654581

  2. Sun, Z.M., Progress in research and development on MAX phases: a family of layered ternary compounds, Int. Mater. Rev., 2011, vol. 56, no. 3, pp. 143–166.https://doi.org/10.1179/1743280410Y.0000000001

    Article  CAS  Google Scholar 

  3. Barsoum, M.W. and Radovic, M., Elastic and mechanical properties of the MAX phases, Annu. Rev. Mater. Res., 2011, vol. 41, pp. 195–227.https://doi.org/10.1146/annurev-matsci-062910-100448

    Article  CAS  Google Scholar 

  4. Barsoum, M.W. and Radovic, M., MAX phases: bridging the gap between metals and ceramics, Am. Ceram. Soc. Bull., 2013, vol. 92, no. 3, pp. 20–27.

    Google Scholar 

  5. Yang, S., Sun, Z.M., Hashimoto, H., and Abe, T., Ti3SiC2 powder synthesis from Ti/Si/TiC powder mixtures, J. Alloys Compd., 2003, vol. 358, nos. 1–2, pp. 168–172.https://doi.org/10.1016/S0925-8388(03)00039-2

    Article  CAS  Google Scholar 

  6. Kero, I., Tegman, R., and Antti, M.-L., Phase reactions associated with the formation of Ti3SiC2 from TiC/Si powders, Ceram. Int., 2011, vol. 37, pp. 2615–2619.https://doi.org/10.1016/j.ceramint.2011.04.132

    Article  CAS  Google Scholar 

  7. Li, H., Chen, D., Zhou, J., Zhao, J.H., and He, L.H., Synthesis of Ti3SiC2 by pressureless sintering of the elemental powders in vacuum, Mater. Lett., 2004, vol. 58, no. 11, pp. 1741–1744.https://doi.org/10.1016/j.matlet.2003.10.057

    Article  CAS  Google Scholar 

  8. Istomin, P.V., Nadutkin, A.V., Ryabkov, Yu.I., and Goldin, B.A., Preparation of Ti3SiC2, Inorg. Mater., 2006, vol. 42, no. 3, pp. 250–255.https://doi.org/10.1134/S0020168506030071

    Article  CAS  Google Scholar 

  9. Hwang, S.S., Lee, S.C., Han, J.H., Lee, D., and Park, S.-W., Machinability of Ti3SiC2 with layered structure synthesized by hot pressing mixture of TiCx and Si powder, J. Eur. Ceram. Soc., 2012, vol. 32, pp. 3493–3500.https://doi.org/10.1016/j.jeurceramsoc.2012.04.021

    Article  CAS  Google Scholar 

  10. Wang, J., Li, A.-J., Wang, S.-M., and Zeng, H.-X., Dependence of the microstructure and properties of TiC/Ti3SiC2 composites on extra C addition, Ceram. Int., 2012, vol. 38, pp. 5967–5971.https://doi.org/10.1016/j.ceramint.2012.04.049

    Article  CAS  Google Scholar 

  11. Gao, N.F., Li, J.T., Zhang, D., and Miyamoto, Y., Rapid synthesis of dense Ti3SiC2 by spark plasma sintering, J. Eur. Ceram. Soc., 2002, vol. 22, pp. 2365–2370.https://doi.org/10.1016/S0955-2219(02)00021-3

    Article  CAS  Google Scholar 

  12. Zhang, J., Wu, T., Wang, L., Jiang, W., and Chen, L., Microstructure and properties of Ti3SiC2/SiC nanocomposites fabricated by spark plasma sintering, Compos. Sci. Technol., 2008, vol. 68, pp. 499–505.https://doi.org/10.1016/j.compscitech.2007.06.006

    Article  CAS  Google Scholar 

  13. Abderrazak, H., Turki, F., Schoenstein, F., Abdellaoui, M., and Jouini, N., Effect of the mechanical alloying on the Ti3SiC2 formation by spark plasma sintering from Ti/Si/C powders, Int. J. Refract. Met. Hard Mater., 2012, vol. 35, pp. 163–169.https://doi.org/10.1016/j.ijrmhm.2012.05.011

    Article  CAS  Google Scholar 

  14. El Saeed, M.A., Deorsola, F.A., and Rashad, R.M., Optimization of the Ti3SiC2 MAX phase synthesis, Int. J. Refract. Met. Hard Mater., 2012, vol. 35, pp. 127–131.https://doi.org/10.1016/j.ijrmhm.2012.05.001

    Article  CAS  Google Scholar 

  15. Istomin, P., Nadutkin, A., and Grass, V., Fabrication of Ti3SiC2-based ceramic matrix composites by a powder-free SHS technique, Ceram. Int., 2013, vol. 39, pp. 3663–3667.https://doi.org/10.1016/j.ceramint.2012.10.196

    Article  CAS  Google Scholar 

  16. Bazhin, P.M., Stel’makh, L.S., and Stolin, A.M., Effect of strain on the formation of a MAX phase in Ti–Al–C materials during self-propagating high temperature synthesis and extrusion, Inorg. Mater., 2019, vol. 55, no. 3, pp. 330–335.https://doi.org/10.1134/S0020168519030051

    Article  Google Scholar 

  17. Wang, Q., Hu, C., Huang, Q., Cai, S., Sakka, Y., and Grasso, S., Synthesis of high-purity Ti3SiC2 by microwave sintering, Int. J. Appl. Ceram. Technol., 2014, vol. 11, pp. 911–918.https://doi.org/10.1111/ijac.12065

    Article  CAS  Google Scholar 

  18. Foratirad, H., Baharvandi, H., and Maraghe, M.G., Effect of excess silicon content on the formation of nano-layered Ti3SiC2 ceramic via infiltration of TiC preforms, J. Eur. Ceram. Soc., 2017, vol. 37, no. 2, pp. 451–457.https://doi.org/10.1016/j.jeurceramsoc.2016.09.004

    Article  CAS  Google Scholar 

  19. Li, S.B., Zhai, H.-X., Zhou, Y., and Zhang, Z.L., Synthesis of Ti3SiC2 powders by mechanically activated sintering of elemental powders of Ti, Si and C, Mater. Sci. Eng., A, 2005, vol. 407, pp. 315–321.https://doi.org/10.1016/j.msea.2005.07.043

    Article  CAS  Google Scholar 

  20. Liang, B.Y., Wang, M.Z., Sun, J.F., Li, X.P., Zhao, Y.C., and Han, X., Synthesis of Ti3SiC2 in air using mechanically activated 3Ti/Si/2C powder, J. Alloys Compd., 2009, vol. 474, pp. 18–21.https://doi.org/10.1016/j.jallcom.2008.06.147

    Article  CAS  Google Scholar 

  21. Fakih, H., Jacques, S., Berthet, M.-P., Bosselet, F., Dezellus, O., and Viala, J.-C., The growth of Ti3SiC2 coatings onto SiC by reactive chemical vapor deposition using H2 and TiCl4, Surf. Coat. Technol., 2006, vol. 201, no. 6, pp. 3748–3755.https://doi.org/10.1016/j.surfcoat.2006.09.040

    Article  CAS  Google Scholar 

  22. Furgeaud, C., Brenet, F., and Nicolai, J., Multi-scale study of Ti3SiC2 thin film growth mechanisms obtained by magnetron sputtering, Materialia, 2019, vol. 7, paper 100369.https://doi.org/10.1016/j.mtla.2019.100369

  23. Hendaoui, A., Vrel, D., Amara, A., Benaldjia, A., and Langlois, P., Ti–Al–C MAX phases by aluminothermic reduction process, Int. J. Self-Propag. High-Temp Synth., 2008, vol. 17, no. 2, pp. 125–128.https://doi.org/10.3103/S1061386208020076

    Article  CAS  Google Scholar 

  24. Cetinkaya, S. and Eroglu, S., Synthesis and reaction mechanism of Ti3SiC2 ternary compound by carbothermal reduction of TiO2 and SiO2 powder mixtures, Ceram. Int., 2012, vol. 38, pp. 6445–6453.https://doi.org/10.1016/j.ceramint.2012.05.020

    Article  CAS  Google Scholar 

  25. Istomin, P., Nadutkin, A., and Grass, V., Fabrication of Ti3SiC2-based composites from titania–silica raw material, Mater. Chem. Phys., 2015, vol. 162, pp. 216–221.https://doi.org/10.1016/j.matchemphys.2015.05.060

    Article  CAS  Google Scholar 

  26. Goldin, B.A., Istomin, P.V., and Ryabkov, Yu.I., Reduction solid-state synthesis of titanium silicide carbide, Ti3SiC2, Inorg. Mater., 1997, vol. 33, no. 6, pp. 577–579.

    CAS  Google Scholar 

  27. Istomin, P., Istomina, E., Nadutkin, A., Grass, V., and Presniakov, M., Synthesis of a bulk Ti4SiC3 MAX phase by reduction of TiO2 with SiC, Inorg. Chem., 2016, vol. 55, no. 21, pp. 11050–11056.https://doi.org/10.1021/acs.inorgchem.6b01601

    Article  CAS  PubMed  Google Scholar 

  28. Istomina, E.I., Istomin, P.V., and Nadutkin, A.V., Preparation of Ti3SiC2 through reduction of titanium dioxide with silicon carbide, Inorg. Mater., 2016, vol. 52, no. 2, pp. 134–140.https://doi.org/10.7868/S0002337X16020056

    Article  CAS  Google Scholar 

  29. Istomina, E.I., Istomin, P.V., Nadutkin, A.V., Grass, V.E., and Bogdanova, A.S., Optimization of the carbosilicothermic synthesis of the Ti4SiC3 MAX phase, Inorg. Mater., 2018, vol. 54, no. 6, pp. 528–536.https://doi.org/10.1134/S0020168518060055

    Article  CAS  Google Scholar 

  30. Istomin, P., Istomina, E., Nadutkin, A., Grass, V., Leonov, A., Kaplan, M., and Presniakov, M., Fabrication of Ti3SiC2 and Ti4SiC3 MAX phase ceramics through reduction of TiO2 with SiC, Ceram. Int., 2017, vol. 43, no. 18, pp. 16128–16135.https://doi.org/10.1016/j.ceramint.2017.08.180

    Article  CAS  Google Scholar 

  31. Istomin, P., Istomina, E., Nadutkin, A., Grass, V., and Kaplan, M., Fabrication of Ti3SiC2–Ti4SiC3–SiC ceramic composites through carbosilicothermic reduction of TiO2, Int. J. Appl. Ceram. Technol., 2019, vol. 16, pp. 746–752.https://doi.org/10.1111/ijac.13101

    Article  CAS  Google Scholar 

  32. Zou, W., Li, F., Zhang, H., Yang, J., Peng, S., and Qiu, T., Microstructure and mechanical properties of in-situ hot pressed (TiB2 + SiC)/ Ti3SiC2 composites with tunable TiB2 content, Adv. Appl. Ceram., 2016, vol. 115, no. 5, pp. 282–287.https://doi.org/10.1080/17436753.2016.1138580

    Article  CAS  Google Scholar 

  33. Song, K., Yang, J., Qiu, T., and Pan, L.M., In situ synthesis of (TiB2 + SiC)/Ti3SiC2 composites by hot pressing, Mater. Lett., 2012, vol. 75, pp. 16–19.https://doi.org/10.1016/j.matlet.2012.01.061

    Article  CAS  Google Scholar 

  34. Kraus, W. and Nolze, G., Powder cell – a program for the representation and manipulation of crystal structures and calculation of the X-ray powder patterns, J. Appl. Crystallogr., 1996, vol. 29, pp. 301–303.https://doi.org/10.1107/S0021889895014920

    Article  CAS  Google Scholar 

  35. Razavi, M., Rahimipour, M.R., and Kaboli, R., Synthesis of TiC nanocomposite powder from impure TiO2 and carbon black by mechanically activated sintering, J. Alloys Compd., 2008, vol. 460 P, pp. 694–698.https://doi.org/10.1016/j.jallcom.2007.06.080

  36. Hajalilou, A., Hashim, M., Ebrahimi-Kahizsangi, R., Ismail, I., and Sarami, N., Synthesis of titanium carbide and TiC–SiO2 nanocomposite powder using rutile and Si by mechanically activated sintering, Adv. Powder Technol., 2014, vol. 25, pp. 1094–1102.https://doi.org/10.1016/j.apt.2014.02.008

    Article  CAS  Google Scholar 

  37. Khalafalla, S.E. and Haas, L.A., Kinetics of carbothermal reduction of quartz under vacuum, J. Am. Ceram. Soc., 1972, vol. 55, no. 8, pp. 414–417.https://doi.org/10.1111/j.1151-2916.1972.tb11324.x

    Article  CAS  Google Scholar 

  38. Youm, M.R., Yun, S., Choi, S.C., and Park, S.W., Synthesis of β-SiC powders by the carbothermal reduction of porous SiO2–C hybrid precursors with controlled surface area, Ceram. Int., 2020, vol. 46, pp. 4870–4877.https://doi.org/10.1016/j.ceramint.2019.10.223

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

In this study, we used equipment at the Khimiya Shared Research Facilities Center, Institute of Chemistry, Komi Scientific Center (Federal Research Center), Ural Branch, Russian Academy of Sciences.

Funding

This work was supported by the Russian Foundation for Basic Research and the Komi Republic Ministry of Education, Science, and Youth Policy (research project no. 20-48-110001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. V. Istomin.

Additional information

Translated by O. Tsarev

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Istomin, P.V., Belyaev, I.M., Istomina, E.I. et al. Carbosilicothermic Synthesis of Ti3SiC2–TiB2–SiC Ceramic Composites from Leucoxene Concentrate. Inorg Mater 57, 308–315 (2021). https://doi.org/10.1134/S0020168521030067

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0020168521030067

Keywords:

Navigation