Skip to main content
Log in

Hydrogenation of Eutectic Alloy in the Mg–Al System

  • Published:
Inorganic Materials Aims and scope

Abstract—

To optimize hydrogenation conditions for microcrystalline eutectic alloy with the composition Mg69Al31 (a mixture of magnesium with the γ-Mg17Al12 intermetallic compound), we have studied reactions of 200-μm powder of the alloy with hydrogen and ammonia in the temperature range 100–500°C. We have determined the composition of the reaction products and demonstrated that the use of hydrogen allows magnesium dihydride to be obtained at a temperature of 420°C and that the hydrogenation of the eutectic alloy with ammonia as a hydriding agent leads to the formation of MgH2 and a solid solution of hydrogen in the Mg17Al12 intermetallic compound at 250°C. The hydrogen content in the reaction products obtained by hydrogenation with hydrogen is 4.4 wt %.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.

Similar content being viewed by others

REFERENCES

  1. Sun, Y., Shen, C., Lai, Q., Liu, W., Wang, D.-W., and Aguey-Zinsou, K.-F., Tailoring magnesium based materials for hydrogen storage through synthesis: current state of the art, Energy Storage Mater., 2018, vol. 10, pp. 168–198.https://doi.org/10.1016/j.ensm.2017.01.010

    Article  Google Scholar 

  2. Yartys, V.A., Lototskyy, M.V., Akiba, E., Albert, R., Antonov, V.E., Ares, J.R., Baricco, M., Bourgeois, N., Buckley, C.E., Bellosta von Colbe, J.M., Crivello, J.-C., Cuevas, F., Denys, R.V., Dornheim, M., Felderhoff, M., Grant, D.M., Hauback, B.C., Humphries, T.D., Jacob, I., Jensen, T.R., de Jongh, P.E., Joubert, J.-M., Kuzovnikov, M.A., Latroche, M., Paskevicius, M., Pasquini, L., Popilevsky, L., Skripnyuk, V.M., Rabkin, E., Sofianos, M.V., Stuart, A., Walker, G., Wang Hui, Webb, C.J., and Zhu Min, Magnesium based materials for hydrogen based energy storage: past, present and future, Int. J. Hydrogen Energy, 2019, vol. 44, pp. 7809–7859.https://doi.org/10.1016/j.ijhydene.2018.12.212

    Article  CAS  Google Scholar 

  3. Fursikov, P.V. and Tarasov, B.P., Hydrogen sorbing magnesium alloys and composites, Russ. Chem. Bull., 2018, vol. 67, no. 2, pp. 193–199.https://doi.org/10.1007/s11172-018-2058-y

    Article  CAS  Google Scholar 

  4. Sadhasivam, T., Kim, H.-T., Jung, S., Roh, S.-H., Park, J.-H., and Jung, H.-Y., Dimensional effects of nanostructured Mg/MgH2 for hydrogen storage applications: a review, Renewable Sustainable Energy Rev., 2017, vol. 72, pp. 523–534.https://doi.org/10.1016/j.rser.2017.01.107

    Article  CAS  Google Scholar 

  5. El-Eskandarany, M.S., Al-Ajmi, F., Banyan, M., and Al-Duweesh, A., Synergetic effect of reactive ball milling and cold pressing on enhancing the hydrogen storage behavior of nanocomposite MgH2/10 wt. % TiMn2 binary system, Int. J. Hydrogen Energy, 2019, vol. 44, pp. 26428–26443.https://doi.org/10.1016/j.ijhydene.2019.08.093

    Article  CAS  Google Scholar 

  6. Tarasov, B.P., Arbuzov, A.A., Mozhzhuhin, S.A., Volodin, A.A., Fursikov, P.V., Lototskyy, M.V., and Yartys, V.A., Hydrogen storage behavior of magnesium catalyzed by nickel–graphene nanocomposites, Int. J. Hydrogen Energy, 2019, vol. 44, no. 55, pp. 29212–29223.https://doi.org/10.1016/j.ijhydene.2019.02.033

    Article  CAS  Google Scholar 

  7. Arbuzov, A.A., Mozhzhukhin, S.A., Volodin, A.A., Fursikov, P.V., and Tarasov, B.P., RF Patent 2675882, Byull. Izobret., 2018, no. 36.

  8. Zhu, Y., Luo, S., Lin, H., Liu, Y., Zhu, Y., Zhang, Y., and Li, L., Enhanced hydriding kinetics of Mg–10 at. % Al composite by forming Al12Mg17 during hydriding combustion synthesis, J. Alloys Compd., 2017, vol. 712, pp. 44–49.https://doi.org/10.1016/j.jallcom.2017.04.049

    Article  CAS  Google Scholar 

  9. Ismail, M., The hydrogen storage properties of destabilized MgH2–AlH3 (2 : 1) system, Mater. Today: Proc., 2016, vol. 3S, pp. S80–S87.https://doi.org/10.1016/j.matpr.2016.01.011

    Article  Google Scholar 

  10. Wang, X.L., Tu, J.P., Zhang, P.L., Zhang, X.B., Chen, C.P., and Zhao, X.B., Hydrogenation properties of ball-milled MgH2–10 wt. % Mg17Al12 composite, Int. J. Hydrogen Energy, 2007, vol. 32, pp. 3406–3410.https://doi.org/10.1016/j.ijhydene.2007.03.003

    Article  CAS  Google Scholar 

  11. Abd. Khalim Khafidz, N.Z., Yaakob, Z., Lim, K.L., and Timmiati, S.N., The kinetics of lightweight solid-state hydrogen storage materials: a review, Int. J. Hydrogen Energy, 2016, vol. 41, pp. 13131–13151.https://doi.org/10.1016/j.ijhydene.2016.05.169

  12. Pang, Y. and Li, Q., A review on kinetic models and corresponding analysis methods for hydrogen storage materials, Int. J. Hydrogen Energy, 2016, vol. 41, pp. 18072–18087.https://doi.org/10.1016/j.ijhydene.2016.08.018

    Article  CAS  Google Scholar 

  13. Ren, J., Musyoka, N.M., Langmi, H.W., Mathe, M., and Liao, S., Current research trends and perspectives on materials-based hydrogen storage solutions: a critical review, Int. J. Hydrogen Energy, 2017, vol. 42, pp. 289–311.https://doi.org/10.1016/j.ijhydene.2016.11.195

    Article  CAS  Google Scholar 

  14. Diagrammy sostoyaniya dvoinykh metallicheskikh sistem: Spravochnik (Phase Diagrams of Binary Metallic Systems: A Handbook), Lyakishev, N.P., Ed., Moscow: Mashinostroenie, 1996, vol. 1.

    Google Scholar 

  15. El-Amoush, A.S., An X-ray investigation of hydrogenated Mg–30Al magnesium alloy, J. Alloys Compd., 2007, vol. 441, pp. 278–283.https://doi.org/10.1016/j.jallcom.2006.09.109

    Article  CAS  Google Scholar 

  16. Urgnani, J., Di Chio, M., Palumbo, M., Feuerbacher, M., Fernandez, J.F., Leardini, F., and Baricco, M., Hydrogen absorption and desorption in rapidly solidified Mg–Al alloys, J. Phys.: Conf. Ser., 2009, vol. 144, paper 012016.https://doi.org/10.1088/1742-6596/144/1/012016

  17. Fokin, V.N., Fursikov, P.V., Fokina, E.E., Korobov, I.I., Fattakhova, A.M., and Tarasov, B.P., Hydrogenation of intermetallic compound Mg17Al12, Russ. J. Inorg. Chem., 2019, vol. 64, no. 9, pp. 1081–1087.https://doi.org/10.1134/S0036023619090122

    Article  CAS  Google Scholar 

  18. Fokin, V.N., Fokina, E.E., Korobov, I.I., and Tarasov, B.P., Hydriding of intermetallic compound Ti2Ni, Russ. J. Inorg. Chem., 2014, vol. 59, no. 10, pp. 1073–1076.https://doi.org/10.1134/S0036023614100076

    Article  CAS  Google Scholar 

  19. Tarasov, B.P., Fokina, E.E., and Fokin, V.N., Dispersion and phase transformations of intermetallic compounds and alloys of Ti, Zr, and Y with iron and nickel in the reaction with ammonia, Russ. Chem. Bull., 2016, vol. 65, no. 8, pp. 1887–1892.https://doi.org/10.1007/s11172-016-1529-2

    Article  CAS  Google Scholar 

  20. Crivello, J.-C., Nobuki, T., and Kuji, T., Limits of the Mg–Al γ-phase range by ball-milling, Intermetallics, 2007, vol. 15, pp. 1432–1437.https://doi.org/10.1016/j.intermet.2007.05.001

    Article  CAS  Google Scholar 

  21. Tarasov, B.P., Fokina, E.E., and Fokin, V.N., Chemical methods of dispergation of metallic phases, Russ. Chem. Bull., 2011, vol. 60, no. 7, pp. 1252–1260.

    Article  CAS  Google Scholar 

  22. Tarasov, B.P., Fokina, E.E., and Fokin, V.N., Preparation of hydrides of intermetallic compounds, Russ. J. Gen. Chem., 2014, vol. 84, no. 2, pp. 194–197.https://doi.org/10.1134/S1070363214020054

    Article  CAS  Google Scholar 

  23. Klyamkin, S.N., Magnesium-based metal hydrides as hydrogen storage materials, Ross. Khim. Zh., 2006, vol. 50, no. 6, pp. 49–55.

    CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

In the scanning electron microscopy and X-ray diffraction work, we used equipment at the Shared Analytical Facilities Centers, Institute of Problems of Chemical Physics and Scientific Center in Chernogolovka, Russian Academy of Sciences.

Funding

This work was supported by the Russian Federation Ministry of Science and Higher Education, agreement no. 05.574.21.0209, unique identifier RFMEFI57418X0209.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. N. Fokin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fokin, V.N., Fursikov, P.V., Fokina, E.E. et al. Hydrogenation of Eutectic Alloy in the Mg–Al System. Inorg Mater 57, 234–240 (2021). https://doi.org/10.1134/S0020168521030043

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0020168521030043

Keywords:

Navigation