Skip to main content
Log in

High-Strength Tetragonal Zirconia/Alumina Ceramic Composites Containing Strontium Hexaaluminate

  • Published:
Inorganic Materials Aims and scope

Abstract—

Using powders prepared by a sol–gel hydrolysis process, we have prepared three-phase ceramic composite materials consisting of alpha-alumina, strontium hexaaluminate, and a solid solution based on tetragonal zirconia stabilized with yttrium [3Y-TZP], cerium [12Ce-TZP], or ytterbium cations [3Yb-TZP]. The cations stabilizing tetragonal zirconia are shown to influence the microstructure of the materials. Having a finer grained microstructure, the [Yb-TZP] matrix composites possess higher strength (bending strength of up to 850 MPa and KIc of up to 11.3 MPa m1/2).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. Garshin, A.P., Gropyanov, V.M., Zaitsev, G.P., and Semenov, S.S., Keramika dlya mashinostroeniya (Ceramics for Machine Building), Moscow: Nauchtekhlitizdat, 2003.

  2. Piconi, C., Maccauro, G., and Muratori, F., Alumina matrix composites in arthroplasty, Key Eng. Mater., 2005, vols. 284–286, pp. 979–982.https://doi.org/10.4028/www.scientific.net/KEM.284-286.979

    Article  Google Scholar 

  3. Putlyaev, V.I., Modern bioceramic materials, Soros. Obraz. Zh., 2004, vol. 8, no. 1, pp. 44–50.

    Google Scholar 

  4. Chevalier, J., Liens, A., Revero, H., Zhan, F., et al., Forty years after the promise of “ceramic steel?”: zirconia based composites with a metal like mechanical behavior, J. Am. Ceram. Soc., 2019, vol. 103, no. 3, pp. 1482–1513.https://doi.org/10.1111/jace.16903

    Article  CAS  Google Scholar 

  5. Malka, I.E., Danelska, A., and Kimmel, G., The influence of Al2O3 content on ZrO2–Al2O3 nanocomposite formation—the comparison between sol–gel and microwave hydrothermal methods, Mater. Today: Proc., 2016, vol. 3, no. 8, pp. 2713–2724.https://doi.org/10.1016/j.matpr.2016.06.018

    Article  Google Scholar 

  6. Obolkina, T.O., Goldberg, M.A., Smirnov, V.V., Smirnov, S.V., Titov, D.D., et al., Increasing the sintering rate and strength of ZrO2–Al2O3 ceramic materials by iron oxide additions, Inorg. Mater., 2020, vol. 56, no. 2, pp. 182–189.https://doi.org/10.1134/S0020168520020156

    Article  CAS  Google Scholar 

  7. Morozova, L.V., Mechanochemical activation of precursor powders for the preparation of dense Al2O3–ZrO2〈Y2O3〉 nanoceramics, Inorg. Mater., 2019, vol. 55, no. 3, pp. 295–301.https://doi.org/10.1134/S0020168519030130

    Article  CAS  Google Scholar 

  8. Podzorova, L.I., Il’icheva, A.A., Shvorneva, L.I., Kutsev, S.V., Mikhailina, N.A., and Pen’kova, O.I., Phase transformations in t-ZrO2–Al2O3 nanoprecursors and formation of the microstructure of related ceramic materials, Glass. Phys. Chem., 2007, vol. 33, no. 5, pp. 510–514.https://doi.org/10.1134/S1087659607050148

    Article  CAS  Google Scholar 

  9. Gao, F. and Wang, T., Apparent fracture energy of brittle materials by branching of crack and microcrack, J. Mater. Sci. Lett., 1990, vol. 9, pp. 1409–1411.https://doi.org/10.1007/BF00721599

    Article  Google Scholar 

  10. Lee, S.J., Chun, S.Y., and Lee, C.H., In situ fabrication of multi- component ceramic composites by steric organic entrapment route, J. Mater. Lett., 2004, vol. 58, pp. 2646–2649.https://doi.org/10.1016/j.matlet.2004.03.036

    Article  CAS  Google Scholar 

  11. Naga, S.M., Elshaer, M., Awaad, M., and Amer, A.A., Strontium hexaaluminate ZTA composites: preparation and characterization, Mater. Chem. Phys., 2019, vol. 232, pp. 23–27.https://doi.org/10.1016/j.matchemphys.2019.04.055

    Article  CAS  Google Scholar 

  12. Kern, F. and Gommeringer, A., Reinforcement mechanisms in yttria–ceria-co-stabilized zirconia–alumina–strontium hexaaluminate composite ceramics, J. Ceram. Sci. Technol., 2018, vol. 9, no. 1, pp. 93–98.https://doi.org/10.4416/JCST2017-00046

    Article  Google Scholar 

  13. Podzorova, L.I., Shvorneva, L.I., Il’icheva, A.A., et al., Microstructure and phase composition of ZrO2–CeO2–Al2O3 materials modified with MgO and Y2O3, Inorg. Mater., 2013, vol. 49, no. 4, pp. 376–381.https://doi.org/10.1134/S0020168513030163

    Article  CAS  Google Scholar 

  14. Podzorova, L.I., Sirotinkin, V.P., Il’icheva, A.A., et al., Phase formation in Al2O3–ZrO2–CeO2 nanopowders modified with calcium cations, Inorg. Mater., 2018, vol. 54, no. 5, pp. 454–459.https://doi.org/10.1134/S0020168518050102

    Article  CAS  Google Scholar 

  15. Il’icheva, A.A., Podzorova, L.I., Sirotinkin, V.P., Antonova, O.S., et al., Formation of strontium hexaaluminate in alumina–tetragonal zirconia systems modified with strontium cations, Russ. J. Inorg. Chem., 2020, vol. 55, no. 2, pp. 154–160.https://doi.org/10.1134/S0036023620020060

    Article  Google Scholar 

  16. Toropov, N.A., Barzakovskaya, V.P., Lapin, V.V, et al., Diagrammy sostoyaniya silikatnykh sistem. Spravochnik (Phase Diagrams of Silicate Systems: a Handbook), Leningrad: Nauka, 1969, issue 1.

  17. Yashima, M. and Takashina, H., Low-temperature phase equilibria by the flux method and the metastable–stable phase in the ZrO2–CeO2 system, J. Am. Ceram. Soc., 1994, vol. 77, no. 7, pp. 1869–1874.https://doi.org/10.1111/j.1151-2916.1994.tb07064.x

    Article  CAS  Google Scholar 

  18. Kornienko, O.A., Andrievskaya, E.R., Bykov, A.I., and Bogatyreva, Zh.D., Phase equilibria in the ZrO2–Yb2O3 system at 1100°C, Vestn. Odessk. Nats. Univ.: Ser. Khim., 2018, vol. 23, no. 1 (65), pp. 85–92. https://doi.org/10.18524/2304-0947.2018.1(65).124549

  19. Sarath, K.C., Monali, M., Chowdary, Ch.V.A., Ghosh, G., and Sarka, D., Microstructure and mechanical behaviour of SrO doped Al2O3 ceramics, Mater. Sci. Eng., A, 2019, vol. 739, pp. 186–192.https://doi.org/10.1016/j.msea.2018.10.038

    Article  CAS  Google Scholar 

  20. Mirkin, L.I., Spravochnik po rentgenostrukturnomu analizu polikristallov (X-Ray Diffraction Analysis of Polycrystals: A Handbook), Moscow: Fizmatlit, 1961, p. 782.

  21. Huang, S., Li, L., Vleugels, J., Biest, O.V.D., and Wang, P., Thermodynamic assessment and microstructure of the ZrO2–Al2O3–CeO2, J. Mater. Sci. Technol., 2004, vol. 20, no. 1, pp. 75–78. https://doi.org/ jmst.org/CN/Y2004/V20/I01/75

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the Russian Federation Ministry of Science and Higher Education, state research target no. 075-00947-20-00.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. I. Podzorova.

Additional information

Translated by O. Tsarev

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Podzorova, L.I., Il’icheva, A.A., Pen’kova, O.I. et al. High-Strength Tetragonal Zirconia/Alumina Ceramic Composites Containing Strontium Hexaaluminate. Inorg Mater 57, 192–196 (2021). https://doi.org/10.1134/S0020168521020102

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0020168521020102

Keywords:

Navigation