Skip to main content
Log in

Heat Capacity and Thermal Expansion of M-EuTaO4

  • Published:
Inorganic Materials Aims and scope

Abstract—

This paper presents temperature dependences of lattice parameters in the range 298–1273 K and molar heat capacity in the range 315–1335 K for high-temperature M-EuTaO4 ceramic, which has been characterized by X-ray diffraction, scanning electron microscopy, and chemical analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Arsen’ev, P.A., Glushkova, V.B., Evdokimov, A.A., et al., Soedineniya redkozemel’nykh elementov. Tsirkonaty, gafnaty, niobaty, tantalaty, antimonaty (Rare-Earth Compounds: Zirconates, Hafnates, Niobates, Tantalates, and Antimonates), Moscow: Nauka, 1985.

  2. Rozhdestvenskii, F.A., Zuev, M.G., and Fotiev, A.A., Tantalaty trekhvalentnykh metallov (Trivalent Metal Tantalates), Moscow: Nauka, 1986.

  3. Osterloh, F.E., Inorganic materials as catalysts for photochemical splitting of water, Chem. Mater., 2008, vol. 20, pp. 35–54.https://doi.org/10.1021/cm7024203

    Article  CAS  Google Scholar 

  4. Arakawa, S., Shiotsy, T., and Hayashi, S., Non-Arrhenius temperature dependence of conductivity of lanthanium lithium tantalate, J. Ceram. Soc. Jpn., 2005, vol. 113, pp. 317–319.https://doi.org/10.2109/jcersj.113.317

    Article  CAS  Google Scholar 

  5. Haugsrud, R. and Norby, T., Proton conduction in rare-earth ortho-niobates and ortho-tantalates, Nat. Mater., 2006, vol. 5, pp. 193–196.https://doi.org/10.1038/nmat1591

    Article  CAS  Google Scholar 

  6. Nyman, M., Rodriguez, M.A., Rohwer, L.E.S., et al., Unique LaTaO4 polymorph for multiple energy applications, Chem. Mater., 2009, vol. 21, pp. 4731–4737.https://doi.org/10.1021/cm9020645/

  7. Brixner, L.H. and Chen, H., On the structural and luminescent properties of the M'LnTaO4 rare earth tantalates, J. Electrochem. Soc., 1983, vol. 130, pp. 2435–2443. https://doi.org/10.1149/1.2119609

    Article  CAS  Google Scholar 

  8. Rozhdestvenskii, F.A. and Zuev, M.G., Designing of lanthanum-tantalate-based luminophores, J. Lumin., 1983, vol. 28, pp. 465–473.https://doi.org/10.1016/0022-2313(83)90013-3

    Article  CAS  Google Scholar 

  9. Siqueira, K.P.F., Carmo, A.P., Bell, M.J.V., and Dias, A., Optical properties of undoped NdTaO4, ErTaO4 and YbTaO4 ceramics, J. Lumin., 2016, vol. 179, pp. 140–153.https://doi.org/10.1016/j.jlomin.2016.06.054

    Article  Google Scholar 

  10. Wang, S., Jiang, M., Gao, L., Ma, Z., and Wang, F., Theoretical and experimental studies on the crystal structure, electronic structure and optical properties of SmTaO4, Materials, 2016, vol. 9, no. 1, pp. 55–59.https://doi.org/10.3390/ma9010055

    Article  CAS  PubMed Central  Google Scholar 

  11. Dou, R., Zhasng, Q., Gao, J., Chen, Y., Ding, S., Peng, F., Liu, W., and Sun, D., Rare-earth tantalates and niobates single crystals: promising scintillators and laser materials, Crystals, 2018, vol. 8, pp. 55–58.https://doi.org/10.3390/cryst8020055

    Article  CAS  Google Scholar 

  12. Voloshyna, O., Gerasimov, J., Siletskiy, O., Kurtsev, D., Gorbacheva, T., Hubenko, K., Boiaryntseva, I., Ivanov, A., Spassky, D., Omelkov, S., and Belsky, A., Fast ultradense GdTa1 – xNbxO4 scintillator crystals, Opt. Mater., 2017, vol. 66, pp. 332–337.https://doi.org/10.1016/j.optmat.2017.02.037

    Article  CAS  Google Scholar 

  13. Nakauchi, D., Koshimizu, M., Okada, G., and Yanagida, T., Floating zone growth and scintillation properties of undoped and Ce-doped GdTaO4 crystals, Radiat. Meas., 2017, vol. 106, pp. 129–133.https://doi.org/10.1016/j.radmeas.2017.03.033

    Article  CAS  Google Scholar 

  14. Wang, J., Chong, X.Y., Zhiu, R., and Feng, J., Microstructure and thermal properties of RETaO4 (RE = Nd, Eu, Gd, Dy, Er, Yb, Lu) as promising thermal barrier coating materials, Scr. Mater., 2017, vol. 126, pp. 24–28.https://doi.org/10.1016/j.scriptamat.2016.08.019

    Article  CAS  Google Scholar 

  15. Chen, L., Hu, M., Wu, P., and Feng, J., Thermal expansion performance and intrinsic lattice thermal conductivity of ferroelastic RETaO4 ceramics, J. Am. Ceram. Soc., 2019, vol. 102, pp. 4809–4821.https://doi.org/10.1111/jace.16328

    Article  CAS  Google Scholar 

  16. Zhou, Y., Gan, G., Ge, Z., and Feng, J., Thermophysical properties of SmTaO4, Sm3TaO7 and SmTa3O9 ceramics, Mater. Res. Express, 2020, vol. 7, paper 015204.https://doi.org/10.1088/2053-1591/ab669f

  17. Shian, S., Sarin, P., Gurac, M., Baram, M., Kriven, W.M., and Clarke, D.R., The tetragonal–monoclinic, ferroelastic transformation in yttrium tantalate and effect of zirconia alloying, Acta Mater., 2014, vol. 69, pp. 196–202.https://doi.org/10.1016/j.actamat.2014.01.054

    Article  CAS  Google Scholar 

  18. Chen, L., Song, P., and Feng, J., Influence of ZnO2 alloying effect on the thermophysical properties of fluorite-type Eu3TaO7 ceramics, Scr. Mater., 2018, vol. 152, pp. 117–121.https://doi.org/10.1016/j.scriptamat.2018.03.042

    Article  CAS  Google Scholar 

  19. Portnoi, K.I., Timofeeva, N.I., and Salibekov, S.E., Synthesis and physicochemical properties of rare-earth tantalates, Izv. Akad. Nauk SSSR, Neorg. Mater., 1970, vol. 6, pp. 289–293.

    CAS  Google Scholar 

  20. Ma, Z., Zheng, J., Wang, S., and Gao, L., First-principle calculations of crystal structures, electronic structures, and optical properties of RETaO4 (RE = Y, La, Sm, Eu, Dy, Er), Opt. Eng., 2018, vol. 57, paper 017107.https://doi.org/10.1117/1.OE.57.1.017107

  21. Siqueira, K.P.F., Carvalho, G.B., and Dias, A., Influence of the processing conditions and chemical environment on the crystal structures and phonon modes of lanthanide orthotantalates, Dalton Trans., 2011, vol. 40, pp. 9454–9460.https://doi.org/10.1039/cldt10783f

    Article  CAS  PubMed  Google Scholar 

  22. Forbes, T.Z., Numan, M., Rodriges, M.A., and Navrotsky, A., The energetics of lanthanum tantalate materials, J. Solid State Chem., 2010, vol. 183, pp. 2516–2521.https://doi.org/10.1016/j.jssc.2010.08.024

    Article  CAS  Google Scholar 

  23. Guskov, V.N., Khoroshilov, A.V., Ryumin, M.A., Kondrat’eva, O.N., Guskov, A.V., and Gavrichev, K.S., Thermal expansion and thermodynamic properties of M-YbTaO4 ceramics, Ceram. Int., 2020, vol. 46, pp. 5402–5406.https://doi.org/10.1016/j.ceramint.2019.10.296

    Article  CAS  Google Scholar 

  24. Nikiforova, G.E., Kondrat’eva, O.N., Tyurin, A.V., Ryumin, M.A., Guskov, V.N., and Gavrichev, K.S., Thermophysical properties of M'-LuTaO4: structural and calorimetric studies, J. Alloys Compd., 2019, vol. 803, pp. 1016–1022.https://doi.org/10.1016/j.jallcom.2019.06.354

    Article  CAS  Google Scholar 

  25. Guskov, V.N., Sazonov, E.G., Tyurin, A.V., Guskov, A.V., Ryumin, M.A., and Gavrichev, K.S., Thermodynamic properties of monoclinic neodymium orthotantalate M-NdTaO4, Russ. J. Inorg. Chem., 2019, vol. 64, pp. 1041–1046.https://doi.org/10.1134/S0036023619080059

    Article  CAS  Google Scholar 

  26. Guskov, V.N., Sazonov, E.G., Khoroshilov, A.V., Ryumin, M.A., Guskov, A.V., and Gavrichev, K.S., Heat capacity and thermal expansion of neodymium orthotantalate, Inorg. Mater., 2019, vol. 55, pp. 959–963.https://doi.org/10.1134/S0020168519090048

    Article  CAS  Google Scholar 

  27. Ryumin, M.A., Sazonov, E.G., Guskov, V.N., Nikiforova, G.E., Gagarin, P.G., Guskov, A.V., Gavrichev, K.S., Baldaev, L.Kh., Mazilin, I.V., and Golushina, L.N., Low-temperature heat capacity of yttrium orthotantalate, Inorg. Mater., 2016, vol. 52, pp. 1149–1154.https://doi.org/10.1134/S0020168516110145

    Article  CAS  Google Scholar 

  28. Khoroshilov, A.V., Ashmarin, A.A., Guskov, V.N., Sazonov, E.G., Gavrichev, K.S., and Novotortsev, V.M., Heat capacity and thermal expansion of yttrium tantalate, Dokl. Phys. Chem., 2019, vol. 484, no. 1, pp. 12–14.https://doi.org/10.1134/S0012501619010032

    Article  CAS  Google Scholar 

  29. Ryumin, M.A., Sazonov, E.G., Guskov, V.N., Gagarin, P.G., Khoroshilov, A.V., Guskov, A.V., Gavrichev, K.S., Baldaev, L.Kh., Mazilin, I.V., and Golushina, L.N., Thermodynamic properties of GdTaO4, Inorg. Mater., 2017, vol. 53, pp. 728–733.https://doi.org/10.1134/S0020168517070147

    Article  CAS  Google Scholar 

  30. Brunckova, E., Kolev, H., and Kanuchova, M., X-ray photoelectron spectroscopy study of neodymium niobate and tantalite precursor and thin films, Surf. Interface Anal., 2018, pp. 1–10.https://doi.org/10.1002/sia.6583

  31. Siqueira, K.P. and Dias, A., Effect of the processing parameters on the crystalline structure of lanthanide orthotantalates, Mater. Res., 2014, vol. 17, suppl. 1, pp. 167–173.https://doi.org/10.1590/S1516-14392013005000189

    Article  CAS  Google Scholar 

  32. Stubičan, V.S., High-temperature transition in rare-earth niobates and tantalates, J. Am. Ceram. Soc., 1964, vol. 47, pp. 55–58.https://doi.org/10.1111/j.1151-2916.1964.tb15654.x

    Article  Google Scholar 

  33. Thakare, J.G., Pandey, C., Mahapatra, M.M., and Mulik, R.S., Thermal barrier coatings—a state of the art review, Met. Mater. Int., 2020.https://doi.org/10.1007/s12540-020-00705-w

  34. Leitner, J., Voňka, P., Sedmidubsky, D., and Svoboda, P., Application of Neumann–Kopp rule for the estimation of heat capacity of mixed oxides, Thermochim. Acta, 2010, vol. 497, pp. 7–13.https://doi.org/10.1016/j.tca.2009.08.002

    Article  CAS  Google Scholar 

  35. Ryumin, M.A., Nikoforova, G.E., Tyurin, A.V., Khoroshilov, A.V., Kondrat’eva, O.N., Guskov, V.N., and Gavrichev, K.S., Heat capacity and thermodynamic functions of La2Sn2O7, Inorg. Mater., 2020, vol. 56, pp. 97–104.https://doi.org/10.1134/S00201685200101148

    Article  CAS  Google Scholar 

  36. Wieser, M.E., Atomic weights of the elements 2005 (IUPAC technical report), Pure Appl. Chem., 2006, vol. 78, pp. 2051–2066.https://doi.org/10.1351/pac200678112051

    Article  CAS  Google Scholar 

  37. Kolomiets, T.Yu., Tel’nova, G.B., Ashmarin, A.A., Chelpanov, V.I., and Solntsev, K.A., Synthesis and sintering of submicron Nd:YAG particles prepared from carbonate precursors, Inorg. Mater., 2017, vol. 53, pp. 874–882.https://doi.org/10.1134/s0020168517080076

    Article  CAS  Google Scholar 

  38. PDF card no. 01-074-6541.

  39. Maier, C.G. and Kelley, K.K., An equation for representation of high temperature heat content data, J. Am. Chem. Soc., 1932, vol. 54, pp. 3243–3246.https://doi.org/10.1021/ja01347a029

    Article  CAS  Google Scholar 

  40. Konings, R.J.M., Beneš, O., Kovács, A., et al., The thermodynamic properties of the f-elements and their compounds. Part 2. The lanthanide and actinide oxides, J. Phys. Chem. Ref. Data, 2014, vol. 43, paper 013101.https://doi.org/10.1063/1.4825256

  41. Jacob, K.T., Shekhar, C., and Waseda, Y., An update on the thermodynamics of Ta2O5, J. Chem. Thermodyn., 2009, vol. 41, pp. 748–753.https://doi.org/10.1016/j.jct.2008.12.006

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was carried out using equipment of the JRC PMR IGIC RAS.

Funding

This work was supported by the Russian Science Foundation, grant no. 18-13-00025.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. N. Guskov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gagarin, P.G., Guskov, A.V., Guskov, V.N. et al. Heat Capacity and Thermal Expansion of M-EuTaO4 . Inorg Mater 57, 197–202 (2021). https://doi.org/10.1134/S0020168521020060

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0020168521020060

Keywords:

Navigation