Skip to main content
Log in

Electrical Conductivity of BaLaIn0.9M0.1O3.95 (M = Mg, Zn)—New Complex Oxides with the Ruddlesden–Popper Structure

  • Published:
Inorganic Materials Aims and scope

Abstract—

In this paper, we analyze the effect of acceptor doping (Zn2+ and Mg2+) in the indium sublattice on the transport properties of the BaLaInO4 phase with the Ruddlesden–Popper structure. The doping is shown to cause an increase in both the oxygen ion and proton conductivities of the material. The highest oxygen ion and proton conductivities are offered by the BaLaIn0.9Mg0.1O3.95 material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. Campbell-Lendrum, D. and Prüss-Ustün, A., Climate change, air pollution and noncommunicable diseases, Bull. W. H. O., 2019, vol. 97, pp. 160–161.https://doi.org/10.2471/BLT.18.224295

    Article  PubMed  Google Scholar 

  2. Akadiri, S.S., Alola, A.A., Olasehinde-William, G., and Etokakpan, M.U., The role of electricity consumption, globalization and economic growth in carbon dioxide emissions and its implications for environmental sustainability targets, Sci. Total Environ., 2020, vol. 708, paper 134 653.https://doi.org/10.1016/j.scitotenv.2019.134653

  3. Davis, S.J., Caldeira, K., and Matthew, H.D., Future CO2 emissions and climate change from existing energy infrastructure, Science, 2010, vol. 329, pp. 1330–1333.https://doi.org/10.1126/science.1188566

    Article  CAS  PubMed  Google Scholar 

  4. Höök, M. and Tang, X., Depletion of fossil fuels and anthropogenic climate change – a review, Energy Policy, 2013, vol. 52, pp. 797–809. https://doi.org/10.1016/j.enpol.2012.10.046

    Article  Google Scholar 

  5. Veziroğlu, T.N. and Şahin, S., 21st century’s energy: hydrogen energy system, Energy Convers. Manage., 2008, vol. 49, pp. 1820–1831.https://doi.org/10.1016/j.enconman.2007.08.015

    Article  CAS  Google Scholar 

  6. Balat, M., Potential importance of hydrogen as a future solution to environmental and transportation problems, Int. J. Hydrogen Energy, 2008, vol. 33, pp. 4013–4029.https://doi.org/10.1016/j.ijhydene.2008.05.047

    Article  CAS  Google Scholar 

  7. Momirlan, M. and Veziroğl, T.N., The properties of hydrogen as fuel tomorrow in sustainable energy system for a cleaner planet, Int. J. Hydrogen Energy, 2005, vol. 30, pp. 795–802.https://doi.org/10.1016/j.ijhydene.2004.10.011

    Article  CAS  Google Scholar 

  8. Guangyao, M., Wany, L., and Dingkun, P., New solid state fuel cells – green power source for 21st century, Ionics, 1998, vol. 4, pp. 451–462.https://doi.org/10.1007/BF02375890

    Article  Google Scholar 

  9. Fabbri, E., Bi, L., Pergolesi, D., and Traversa, E., Towards the next generation of solid oxide fuel cells operating below 600°C with chemically stable proton-conducting electrolytes, Adv. Mater., 2002, vol. 24, pp. 195–208.https://doi.org/10.1002/adma.201103102

    Article  CAS  Google Scholar 

  10. Medvedev, D., Trends in research and development of protonic ceramic electrolysis cells, Int. J. Hydrogen Energy, 2019, vol. 44, paper 27711.https://doi.org/10.1016/j.ijhydene.2019.08.130

  11. Dai, H., Kou, H., and Wang, H., Bi. l. electrochemical performance of protonic ceramic fuel cells with stable BaZrO3-based electrolyte: a mini-review, Electrochem. Commun., 2018, vol. 96, pp. 11–15.https://doi.org/10.1016/j.elecom.2018.09.001

    Article  CAS  Google Scholar 

  12. Loureiro, F.J.A., Nasani, N., Reddy, G.S., Munirathnam, N.R., and Fagg, D.P., A review on sintering technology of proton conducting BaCeO3–BaZrO3 perovskite oxide materials for protonic ceramic fuel cells, J. Power Sources, 2019, vol. 438, paper 226991.https://doi.org/10.1016/j.jpowsour.2019.226991

  13. Choi, S.M., An, H., Yoon, K.J., Kim, B., Lee, H.W., and Son, J.W., Electrochemical analysis of high-performance protonic ceramic fuel cells based on a columnar-structured thin electrolyte, Appl. Energy, 2019, vols. 233–234, pp. 29–36.https://doi.org/10.1016/j.apenergy.2018.10.043

    Article  CAS  Google Scholar 

  14. Hideshima, N. and Hashizume, K., Effect of partial substitution of In by Zr, Ti and Hf on protonic conductivity of BaInO2.5, Solid State Ionics, 2010, vol. 181, pp. 1659–1664.https://doi.org/10.1016/j.ssi.2010.09.029

    Article  CAS  Google Scholar 

  15. Tarasova, N. and Animitsa, I., The influence of anionic heterovalent doping on transport properties and chemical stability of F-, Cl-doped brownmillerite Ba2In2O5, J. Alloys Compd., 2018, vol. 739, pp. 353–359.https://doi.org/10.1016/j.jallcom.2017.12.317

    Article  CAS  Google Scholar 

  16. Fujii, K., Shiraiwa, M., Esaki, Y., Yashima, M., Kim, S.J., and Lee, S., Improved oxide-ion conductivity of NdBaInO4 by Sr doping, J. Mater. Chem. A, 2015, vol. 3, paper 11985.https://doi.org/10.1039/C5TA01336D

  17. Yang, X., Liu, S., Lu, F., Xu, J., and Kuang, X., Acceptor doping and oxygen vacancy migration in layered perovskite NdBaInO4-based mixed conductors, J. Phys. Chem. C, 2016, vol. 120, pp. 6416–6426.https://doi.org/10.1021/acs.jpcc.6b01530

    Article  CAS  Google Scholar 

  18. Shiraiwa, M., Fujii, K., Esaki, Y., Kim, S.J., Lee, S., and Yashima, M., Crystal structure and oxide-ion conductivity of Ba1 + xNd1 − xInO4 − x/2, J. Electrochem. Soc., 2017, vol. 164, pp. F1392–F1399.https://doi.org/10.1149/2.0411713jes

    Article  CAS  Google Scholar 

  19. Tarasova, N. and Animitsa, I., Protonic transport in oxyfluorides Ba2InO3F and Ba3In2O5F2 with Ruddlesden–Popper structure, Solid State Ionics, 2015, vol. 275, pp. 53–57.https://doi.org/10.1016/j.ssi.2015.03.025

    Article  CAS  Google Scholar 

  20. Tarasova, N., Animitsa, I., Galisheva, A., and Korona, D., Incorporation and conduction of protons in Ca, Sr, Ba-Doped BaLaInO4 with Ruddlesden–Popper structure, Materials, 2019, vol. 12, paper 1668.https://doi.org/10.3390/ma12101668

  21. Tarasova, N., Animitsa, I., Galisheva, A., and Pryakhina, V., Protonic transport in the new phases BaLaIn0.9M0.1O4.05 (M = Ti, Zr) with Ruddlesden–Popper structure, Solid State Sci., 2020, vol. 101, paper 106121.https://doi.org/10.1016/j.solidstatesciences.2020.106121

  22. Titov, Yu.A., Belyavina, N.M., and Markiv, V.Ya., Synthesis and crystal structure of BaLaInO4 and SrLnInO4 (Ln−La, Pr), Rep. Natl. Acad. Sci. Ukr., 2009, vol. 10, pp. 160–166.

    Google Scholar 

  23. Shannon, R.D., Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides, Acta Crystallogr., Sect. A: Cryst. Phys., Diffr., Theor. Gen. Crystallogr., 1976, vol. 32, no. 5, pp. 751–767.https://doi.org/10.1107/S0567739476001551

    Article  Google Scholar 

  24. Kharton, V.V., Marques, F.M.B., and Atkinson, A., Transport properties of solid oxide electrolyte ceramics: a brief review, Solid State Ionics, 2004, vol. 174, pp. 135–149.https://doi.org/10.1016/j.ssi.2004.06.015

    Article  CAS  Google Scholar 

  25. Grimaud, A., Bassat, J.M., Mauvy, F., Simon, P., Canizares, A., Rousseau, B., Marrony, M., and Grenier, J.C., Transport properties and in-situ Raman spectroscopy study of BaCe0.9Y0.1O3 − δ as a function of water partial pressures, Solid State Ionics, 2011, vol. 191, pp. 24–31.https://doi.org/10.1016/j.ssi.2011.03.020

    Article  CAS  Google Scholar 

  26. Poetzsch, D., Merkle, R., and Maier, J., Proton conductivity in mixed-conducting BSFZ perovskite from thermogravimetric relaxation, Phys. Chem. Chem. Phys., 2014, vol. 16, paper 16446.https://doi.org/10.1039/C4CP00459K

  27. Kochetova, N., Animitsa, I., Medvedev, D., Demin, A., and Tsiakaras, P., Recent activity in the development of proton-conducting oxides for high-temperature applications, RSC Adv., 2014, vol. 6, pp. 73222–73268.https://doi.org/10.1039/c6ra13347a

    Article  CAS  Google Scholar 

  28. Kochetova, N.A., Animitsa, I.E., and Neiman, A.Ya., Electric properties of solid solutions based on strontium tantalate with perovskite type structure. protonic conductivity, Russ. J. Electrochem., 2010, vol. 46, pp. 168–174.https://doi.org/10.1134/S1023193510020072

    Article  CAS  Google Scholar 

  29. Kreuer, K.D., Proton-conducting oxides, Ann. Rev. Mater. Res., 2003, vol. 33, pp. 333–359.https://doi.org/10.1146/annurev.matsci.33.022802.091825

    Article  CAS  Google Scholar 

  30. Haugsrud, R., High temperature proton conductors – fundamentals and functionalities, Diffus. Found., 2016, vol. 8, pp. 31–79.https://doi.org/10.4028/www.scientific.net/DF.8.31

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to N. A. Tarasova or I. E. Animitsa.

Additional information

Translated by O. Tsarev

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tarasova, N.A., Galisheva, A.O. & Animitsa, I.E. Electrical Conductivity of BaLaIn0.9M0.1O3.95 (M = Mg, Zn)—New Complex Oxides with the Ruddlesden–Popper Structure. Inorg Mater 57, 60–67 (2021). https://doi.org/10.1134/S0020168521010155

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0020168521010155

Keywords:

Navigation