Skip to main content
Log in

Calibration Standard Samples for Multielement Analysis of Silicate Rocks Using Inductively Coupled Plasma Mass Spectrometry with Laser Ablation

  • SUBSTANCES ANALYSIS
  • Published:
Inorganic Materials Aims and scope

Abstract

A comparison of different standard samples—artificial glass SRM-612 (Standard Reference Material) and standard samples of natural composition SG-1A, SG-3, ST-1A, and SGD-1A—used for external calibration in the elemental analysis of silicate rocks in the form of fused glasses by inductively coupled plasma mass spectrometry and laser ablation (LA-ICP-MS) is carried out with a goal of selecting the most suitable samples for plotting the calibration dependence upon determination of the major and trace elements when using LA-ICP-MS for routine analysis. The results showed that the error of determination for both major and trace elements is lower (compared to SRM-612) when external calibration is carried out using the reference materials of natural composition with Si and Fe contents close to those in the analyzed samples. The use of internal standards in both cases decreases the systematic error attributed to the drift of LA parameters and different ablation yields. The correctness of the determination of 28 elements is proved in comparison of the results of the analysis of four standard samples with the reference values. The obtained results are used to select calibration standards for LA-ICP-MS analysis of the samples of unknown composition. The results of analysis of six samples of unknown composition match within the error limit the results of X-ray fluorescence analysis (major elements) and ICP-MS (trace elements in solutions). Refining of the content of trace elements in the previously certified reference materials allows them to be used for calibration in routine analysis of geological rocks. The developed LA-ICP-MS technique is a rapid method for determination of a wide range of elements, in particular, rare earth elements, in silicate rocks and can be used for routine analysis without additional sample preparation after X-ray fluorescence analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. Yu, Z., Norman, M.D., and Robinson, P., Major and trace element analysis of silicate rocks by XRF and laser ablation ICP-MS using lithium borate fused glasses: matrix effects, instrument response and results for international reference materials, Geostand. Newsl., 2003, vol. 27, no. 1, pp. 67–89. https://doi.org/10.1111/j.1751-908X.2003.tb00713.x

    Article  CAS  Google Scholar 

  2. Gunther, D., Quadt, A., Wirz, R., et al., Elemental analyses using laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) of geological samples fused with Li2B4O7 and calibrated without matrix-matched standards, Microchim. Acta, 2001, vol. 136, nos. 3–4, pp. 101–107. https://doi.org/10.1007/s006040170038

    Article  CAS  Google Scholar 

  3. Odegard, M., Dundas, S.H., Flem, B., and Grimstvedt, A., Application of a double-focusing magnetic sector inductively coupled plasma mass spectrometer with laser ablation for the bulk analysis of rare earth elements in rocks fused with Li2B4O7, Fresenius J. Anal. Chem., 1998, vol. 362, no. 5, pp. 477–482. https://doi.org/10.1007/s002160051110

    Article  Google Scholar 

  4. Robinson, Ph., Townsend, T., Yu, Z., and Münker, C., Determination of scandium, yttrium and rare earth elements in rocks by high resolution inductively coupled plasma-mass spectrometry, Geostand. Newsl., 1999, vol. 23, no. 1, pp. 31–46. https://doi.org/10.1111/j.1751-908X.1999.tb00557.x

    Article  CAS  Google Scholar 

  5. Willbold, M. and Jochum, K.P., Multi-element isotope dilution sector field ICP-MS: A precise technique for the analysis of geological materials and its application to geological reference materials, Geostand. Newsl., 2005, vol. 29, no. 1, pp. 63–82. https://doi.org/10.1111/j.1751-908X.2005.tb00656.x

    Article  CAS  Google Scholar 

  6. Laser-Ablation-ICPMs in the Earth Sciences: Principles and Applications, Quebec: Miner. Assoc. Can., 2001, vol. 29.

  7. Sylvester, P.J. and Jackson, S.E., A brief history of laser ablation inductively coupled plasma mass-spectrometry (LA-ICP-MS), Elements, 2016, vol. 12, no. 5, pp. 307–310. https://doi.org/10.2113/gselements.12.5.307

    Article  CAS  Google Scholar 

  8. Svetov, S.A., Stepanova, A.V., Chazhengina, S.Yu., et al., Precision (ICP-MS, LA-ICP-MS) analysis of rocks and minerals: methods and assessment of results accuracy on the example of early Cambrian mafic complexes, Tr. Karel. Nauchn. Tsentra, Ross. Akad. Nauk, 2015, no. 7, pp. 54–73. https://doi.org/10.17076/geo140

  9. ver Hoeve, T.J., Scoates, J.S., Wall, C.J., et al., Evaluating downhole fractionation corrections in LA-ICP-MS U-Pb zircon geochronology, Chem. Geol., 2018, vol. 483, pp. 201–217. https://doi.org/10.1039/c8ja00321a

    Article  CAS  Google Scholar 

  10. Raith, A. and Hutton, R.C., Quantification methods using laser ablation ICP-MS. Part 1: Analysis of powders, Fresenius J. Anal. Chem., 1994, vol. 350, nos. 4–5, pp. 242–246. https://doi.org/10.1007/BF00322476

    Article  CAS  Google Scholar 

  11. Eggins, S.M., Laser ablation ICP-MS analysis of geological materials prepared as lithium borate glasses, Geostand. Newsl., 2003, vol. 27, no. 2, pp. 147–162. https://doi.org/10.1111/j.1751-908X.2003.tb00642.x

    Article  CAS  Google Scholar 

  12. Becker, J.S. and Dietze, H.-J., Determination of trace elements in geological samples by ablation inductively coupled plasma mass spectrometry, Fresenius J. Anal. Chem., 1999, vol. 365, pp. 429–434. https://doi.org/10.1007/s002160051635

    Article  CAS  Google Scholar 

  13. Orihashi, Y. and Hirata, T., Rapid quantitative analysis of Y and REE abundances in XRF glass bead for selected GSJ reference rock standards using Nd-YAG 266 nm UV laser ablation ICP-MS, Geochem. J., 2003, vol. 37, pp. 401–412. https://doi.org/10.2343/geochemj.37.401

    Article  CAS  Google Scholar 

  14. Jenner, F.E. and Arevalo, R.D., Major and trace element analysis of natural and experimental igneous systems using LA-ICP-MS, Elements, 2016, vol. 12, no. 5, pp. 311–316. https://doi.org/10.2113/gselements.12.5.311

    Article  CAS  PubMed  Google Scholar 

  15. Petrelli, M., Perugini, D., Poli, G., and Peccerillo, A., Graphite electrode lithium tetraborate fusion for trace element determination in bulk geological samples by laser ablation ICP-MS, Microchim. Acta, 2007, vol. 158, pp. 275–282. https://doi.org/10.1007/s00604-006-0731-6

    Article  CAS  Google Scholar 

  16. He, Z., Huang, F., Yu, X., et al., A flux-free fusion technique for rapid determination of major and trace elements in silicate rocks by LA-ICP-MS, Geostand. Geoanal. Res., 2016, vol. 40, no. 1, pp. 5–27. https://doi.org/10.1111/ggr.12240

    Article  CAS  Google Scholar 

  17. Kurosawa, M., Shima, K., Ishii, S., and Sasa, K., Trace element analysis of fused whole-rock glasses by laser ablation-ICP-MS and PIXE, Geostand. Newsl., 2006, vol. 30, no. 1, pp. 17–30. https://doi.org/10.1111/j.1751-908X.2006.tb00908.x

    Article  CAS  Google Scholar 

  18. Yong, S.L., Zhao, C.H., Ming, L., and Shan, G., Applications of LA-ICP-MS in the elemental analyses of geological samples, Chin. Sci. Bull., 2013, vol. 58, no. 32, pp. 3863–3878. https://doi.org/10.1007/s11434-013-5901-4

    Article  CAS  Google Scholar 

  19. Chernonozhkin, S.M. and Saprykin, A.I., Application of laser ablation for solid samples analysis by inductively coupled plasma, Mass-Spektrom., 2012, vol. 9, no. 3, pp. 157–166.

    CAS  Google Scholar 

  20. Laser Ablation-ICP-MS in the Earth Sciences: Current Practices and Outstanding Issues, Sylvester, P., Ed., Quebec: Miner. Assoc. Can., 2008, vol. 40, pp. 2008.

  21. Weis, P., Beck, H.P., and Gunther, D., Characterizing ablation and aerosol generation during elemental fractionation on absorption modified lithium tetraborate glasses, Anal. Bioanal. Chem., 2005, vol. 381, pp. 212–224. https://doi.org/10.1007/s00216-004-2947-9

    Article  CAS  PubMed  Google Scholar 

  22. Lin, J., Liu, Y., Yang, Y., and Hu, Z., Calibration and correction of LA-ICP-MS and LA-MC-ICP-MS analyses for element contents and isotopic ratios, Solid Earth Sci., 2016, vol. 1, no. 1, pp. 5–27. https://doi.org/10.1016/j.sesci.2016.04.002

    Article  Google Scholar 

  23. Li, C.-Y., Jiang, Y.-H., Zhay, Y., et al., Trace element analyses of fluid inclusions using laser ablation ICP-MS, Solid Earth Sci., 2018, vol. 3, no. 1, pp. 8–13. https://doi.org/10.1016/j.sesci.2017.12.001

    Article  Google Scholar 

  24. Jackson, S.E., Calibration strategies for elemental analysis by LA–ICP–MS, in Laser Ablation-ICP-MS in the Earth Sciences: Current Practices and Outstanding Issues, Sylvester, P., Ed., Quebec: Miner. Assoc. Can., 2008, vol. 40, pp. 169–188.

    Google Scholar 

  25. Nikolaeva, I.V., Palesskii, S.V., Koz’menko, O.A., and Anoshin, G.N., Analysis of geologic reference materials for REE and HFSE by inductively coupled plasma-mass spectrometry (ICP-MS), Geochem. Int., 2008, vol. 46, no. 10, pp. 1085–1091. https://doi.org/10.1134/S0016702908100066

    Article  Google Scholar 

  26. Nikolaeva, I.V., Palesskiy, S.V., Chirko, O.S., and Chernonozhkin, S.M., Determination of major and trace elements by inductively coupled plasma mass-spectrometry in silicate rocks after fusion with LiBO2, Anal. Kontrol, 2012, vol. 16, no. 2, pp. 1–9. http://elar.urfu.ru/bitstream/10995/42542/1/aik_2012_ 02_134-142.pdf

  27. Experimintal samples. http://www.igc.irk.ru/ru/content_page/148?start=0. Accessed November 8, 2018.

  28. Mysovskaya, I.N., Smirnova, E.V., Lozhkin, V.I., and Pakhomova, N.N., New data on determination of rare and trace elements in geological standards using inductively coupled plasma mass spectrometry, Inorg. Mater., 2010, vol. 46, no. 15, pp. 1702–1709.

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

We are grateful to O.M. Turkina and N.N. Kruk for the samples provided for the study and to N.S. Karmanov for performing the X-ray fluorescence analysis.

Funding

This work was supported by the state task of the Sobolev Institute of Geology and Mineralogy, Siberian Branch, Russian Academy of Sciences, no. 0330-2016-0013.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. V. Palesskiy.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by L. Mosina

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Palesskiy, S.V., Nikolaeva, I.V. Calibration Standard Samples for Multielement Analysis of Silicate Rocks Using Inductively Coupled Plasma Mass Spectrometry with Laser Ablation. Inorg Mater 56, 1398–1408 (2020). https://doi.org/10.1134/S0020168520140101

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0020168520140101

Keywords:

Navigation