Skip to main content
Log in

Voltammetric Method for Determination of Glutathione on a Gold-Carbon-Containing Electrode

  • SUBSTANCES ANALYSIS
  • Published:
Inorganic Materials Aims and scope

Abstract

Glutathione (GSH) is one of the most important thiol-containing antioxidants involved in various biochemical processes in the human body. Glutathione determination in biological fluids (saliva, urine, serum) and pharmaceutical preparations is rather important for clinical practice. Various analytical methods such as spectrophotometry, fluorimetry, high-performance liquid chromatography, NMR spectroscopy, capillary electrophoresis, and electrochemical methods are widely used for this purpose. Electrochemical methods are characterized by easy implementation, low cost, and possibility of miniaturization. The electrochemical behavior of reduced (GSH) and oxidized (GSSG) glutathione on a gold-carbon-containing electrode (AuCE) was studied using cathodic voltammetry with different methods of removing oxygen from an electrochemical cell: nitrogen sparging and addition of sodium sulfite (4 mol/dm3). It has been shown that traces of H2O2 that remain in the near-electrode layer on the AuCE even after oxygen removal influence the electrochemical properties of GSH at a cathode sweep of the potential from 0 to –1.8 V: GSH is oxidized by H2O2 to GSSG; the most important product of this reaction is O2. An indirect determination of GSH by the current of oxygen reduction in the Na2SO3 medium in the concentration range from 0.5 × 10–8 to 4.2 × 10–8 mol/dmm3 with a detection limit of 2.5 × 10–9 mol/dm3 is proposed. The developed voltammetric method is approved for the determination of GSH in certain pharmaceutical preparations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Galli, F., Rossi, R., Floridi, A., and Canestrari, F., Protein thiols and glutathione influence the nitric oxide-dependent regulation of the red blood cell metabolism, Nitric Oxide Biol. Chem., 2002, vol. 6, pp. 186–199.

    Article  CAS  Google Scholar 

  2. Dickinson, D.A. and Forman, H.J., Cellular glutathione and thiols metabolism, Biochem. Pharmacol., 2002, vol. 64, pp. 1019–1026.

    Article  CAS  PubMed  Google Scholar 

  3. Hassan, M.Q., Hadi, R.A., Al-Rawi, Z.S., et al., The glutathione defense system in the pathogenesis of rheumatoid arthritis, J. Appl. Toxicol., 2001, vol. 21, no. 1, pp. 69–73.

    Article  CAS  PubMed  Google Scholar 

  4. Watanabe, K. and Guengerich, F.P., Limited reactivity of formyl chloride with glutathione and relevance to metabolism and toxicity of dichloromethane, Chem. Res. Toxicol., 2016, vol. 19, pp. 1091–1096.

    Article  CAS  Google Scholar 

  5. Samiec, P., Botsch, C.D., Flagg, E.W., and Kurtz, J.C., Glutathione in human plasma: decline in association with aging, age related macular degeneration, and diabetes, Free Radical Biol. Med., 1998, vol. 24, pp. 699–704.

    Article  CAS  Google Scholar 

  6. Weber, G.F., Final common pathways in neurodegenerative diseases: regulatory role of the glutathione cycle, Neurosci. Biobehav. Rev., 1999, vol. 23, pp. 1079–1086.

    Article  CAS  PubMed  Google Scholar 

  7. Gu, F., Chauhan, V., and Chauhan, A., Glutathione redox imbalance in brain disorders, Curr. Opin. Clin. Nutr., 2015, vol. 18, pp. 89–95.

    Article  CAS  Google Scholar 

  8. Plotnikov, E., Korotkova, E., Voronova, O., et al., Comparative investigation of antioxidant activity of human serum blood by amperometric, voltammetric and chemiluminescent methods, Arch. Med. Sci., 2016, vol. 12, no. 5, pp. 1071–1076.

    Article  PubMed  CAS  Google Scholar 

  9. Korotkova, E., Misini, B., Dorozhko, E., et al., Study of OH radicals in human serum blood of healthy individuals and those with pathological schizophrenia, Int. J. Mol. Sci., 2011, vol. 12, no. 1, pp. 401–409.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Hormozi-Nezhad, M.R., Seyedhosseini, E., and Robatjazi, H., Spectrophotometric determination of glutathione and cysteine based on aggregation of colloidal gold nanoparticles, Sci. Iran., 2014, vol. 19, no. 3, pp. 958–963.

    Article  CAS  Google Scholar 

  11. Hepel, M. and Stobiecka, M., Comparative kinetic model of fluorescence enhancement in selective binding of monochlorobimane to glutathione, J. Photochem. Photobiol., A, 2011, vol. 225, no. 1, pp. 72–80.

    Article  CAS  Google Scholar 

  12. Markina, M., Lebedeva, E., Neudachina, L., et al., Determination of antioxidants in human skin by capillary zone electrophoresis and potentiometry, Anal. Lett., 2016, vol. 49, no. 12, pp. 1804–1815.

    Article  CAS  Google Scholar 

  13. Pastore, A., Massoud, R., Motti, G., et al., Fully automated assay for total homocysteine, cysteine, cysteinylglycine, glutathione, cysteamine, and 2-mercaptopropionylglycine in plasma and urine, Clin. Chem., 1998, vol. 44, no. 4, pp. 825–832.

    Article  CAS  PubMed  Google Scholar 

  14. Tsikas, D. and Brunner, G., High-performance liquid chromatography of glutathione conjugates, Anal. Bioanal. Chem., 1992, vol. 343, no. 3, pp. 330–334.

    CAS  Google Scholar 

  15. Salazar, J.F., Schorr, H., Herrmann, W., et al., Measurement of thiols in human plasma using liquid chromatography with precolumn derivatization and fluorescence detection, J. Chromatogr. Sci., 1999, vol. 37, no. 12, pp. 469–476.

    Article  CAS  PubMed  Google Scholar 

  16. Rae, C.D. and Williams, S.R., Glutathione in the human brain: review of its roles and measurement by magnetic resonance spectroscopy, Anal. Biochem., 2017, vol. 529, pp. 127–143.

    Article  CAS  PubMed  Google Scholar 

  17. Lee, P.T., Goncalves, L.M., and Compton, R.G., Electrochemical determination of free and total glutathione in human saliva samples, Sens. Actuators, B, 2015, vol. 221, pp. 962–968.

    Article  CAS  Google Scholar 

  18. Harfield, J.C., Batchelor-McAuley, C., and Compton, R.G., Electrochemical determination of glutathione: a review, Analyst, 2012, vol. 137, pp. 2285–2296.

    Article  CAS  PubMed  Google Scholar 

  19. Hassanvand, Z. and Jalali, F., Electrocatalytic determination of glutathione using transition metal hexacyanoferrates (MHCFs) of copper and cobalt electrode posited on graphene oxide nanosheets, Anal. Bioanal. Chem. Res., 2018, vol. 5, no. 1, pp. 115–129.

    CAS  Google Scholar 

  20. Karimi-Maleh, H., Keyvanfard, M., Alizad, K., et al., Electrocatalytic determination of glutathione using multiwall carbon nanotubes paste electrode as a sensor and isoprenaline as a mediator, Int. J. Electrochem. Sci., 2012, vol. 7, pp. 6816–6830.

    CAS  Google Scholar 

  21. Taei, M., Hadadzadeh, X., and Hasanpour, F., A voltammetric sensor based on multiwalled carbon nanotubes and a new azoferrocene derivative for determination of glutathione, Sens. J., 2015, vol. 15, no. 8, pp. 4472–4479.

    Article  CAS  Google Scholar 

  22. Karimi-Maleh, H., Tahernejad-Javazmi, F., Gupta, V.K., et al., A novel biosensor for liquid phase determination of glutathione and amoxicillin in biological and pharmaceutical samples using a ZnO/CNTs nanocomposite/catechol derivative modified electrode, J. Mol. Liq., 2014, vol. 196, pp. 258–263.

    Article  CAS  Google Scholar 

  23. Beitollahi, H., Gholami, A., and Reza Ganjali, M., Preparation, characterization and electrochemical application of Ag-ZnO nanoplates for voltammetric determination of glutathione and tryptophan using modified carbon paste electrode, Mater. Sci. Eng., C, 2015, vol. 57, pp. 107–112.

    Article  CAS  Google Scholar 

  24. Karimi-Maleh, H., Tahernejad-Javazmi, F., Ensafi, A.A., et al., A high sensitive biosensor based on FePt/CNTs nanocomposite/N-(4-hydroxyphenyl)-3,5-dinitrobenzamide modified carbon paste electrode for simultaneous determination of glutathione and piroxicam, Biosens. Bioelectron., 2014, vol. 60, pp. 1–7.

    Article  CAS  PubMed  Google Scholar 

  25. Soltani, H., Beitollahi, H., Hatefi-Mehrjardi, A.-H., and Torkzadeh-Mahani, M., Voltammetric determination of glutathione using a modified single walled carbon nanotubes paste electrode, Anal. Bioanal. Electrochem., 2014, vol. 6, no. 1, pp. 67–79.

    CAS  Google Scholar 

  26. Rezaei, B., Khosropour, H., Asghar Ensafi, A., et al., A differential pulse voltammetric sensor for determination of glutathione in real samples using a trichloro(terpyridine)ruthenium (III)/multiwall carbon nanotubes modified paste electrode, Sens. J., 2015, vol. 15, no. 1, pp. 483–490.

    Article  CAS  Google Scholar 

  27. Keyvanfard, M. and Alizad, K., A sensitive voltammetric sensor for determination of glutathione based on multiwall carbon nanotubes paste electrode incorporating pyrogallol red, Orient. J. Chem., 2014, vol. 30, no. 2, pp. 593–599.

    Article  CAS  Google Scholar 

  28. Liu, B., Ma, C., Li, Y., et al., Voltammetric determination of reduced glutathione using poly(thionine) as a mediator in the presence of Fenton-type reaction, Talanta, 2017, vol. 170, pp. 399–405.

    Article  CAS  PubMed  Google Scholar 

  29. Huang, Y., Yan, H., and Tong, Y., Electrocatalytic determination of reduced glutathione using rutin as a mediator at acetylene black spiked carbon paste electrode, J. Electroanal. Chem., 2015, vol. 743, pp. 25–30.

    Article  CAS  Google Scholar 

  30. Noskova, G.N., Zakharova, E.A., Chernov, V.I., et al., Properties and application of gold-carbon composite electrodes in electrochemical analysis methods, Izv. Tomsk. Politekh. Univ., Inzh. Georesur., 2012, vol. 320, no. 3, pp. 109–115.

    Google Scholar 

  31. Zakharova, E.A., Noskova, G.N., Elesova, E.E., and Antonova, S.G., Determination of arsenic (V) in waters by the method of inversion voltammetry against the background of sodium sulfite in the presence of manganese (II) ions, Zavod. Lab., Diagn. Mater., 2012, vol. 79, no. 5, pp. 17–23.

    Google Scholar 

  32. Zakharova, E.A., Antonova, S.G., Noskova, G.N., Skvortsova, L.N., and Te, A.V., Methods of the determination of inorganic arsenic species by stripping voltammetry in weakly alkaline media, J. Anal. Chem., 2016, vol. 71, no. 8, pp. 823–833.

    Article  CAS  Google Scholar 

  33. Abedinzadeh, Z., Gardes-Albert, M., and Ferradini, C., Kinetic study of the oxidation mechanism of glutathione by hydrogen peroxide in neutral aqueous medium, Can. J. Chem., 1989, vol. 67, no. 7, pp. 1247–1255.

    Article  CAS  Google Scholar 

  34. Shinichi, E., Hoffmann, M.R., and Colussi, A.J., OH-radical specific addition to glutathione S-atom at the air-water interface: relevance to the redox balance of the lung epithelial lining fluid, J. Phys. Chem. Lett., 2015, vol. 6, no. 19, pp. 3935–3943.

    Article  CAS  Google Scholar 

  35. Flohe, L., The fairytale of the GSSG/GSH redox potential, Biochim. Biophys. Acta, Gen. Subj., 2013, vol. 1830, no. 5, pp. 3139–3142.

    Article  CAS  Google Scholar 

  36. Pisoschi, A.M., Electroanalytical techniques for the determination of sulphite preservative: an editorial, Biochem. Anal. Biochem., 2014, vol. 3, pp. 32–34.

    Article  CAS  Google Scholar 

  37. El-Deab, M.S. and Ohsaka, T., Quasi-reversible two-electron reduction of oxygen at gold electrodes modified with a self-assembled submonolayer of cysteine, Electrochem. Commun., 2013, vol. 5, no. 3, pp. 214–219.

    Article  CAS  Google Scholar 

  38. Skavas, E. and Hemmingsen, T., Kinetics and mechanism of sulphite oxidation on a rotating platinum disc electrode in an alkaline solution, Electrochim. Acta, 2007, vol. 52, pp. 3510–3517.

    Article  CAS  Google Scholar 

  39. Senning, A., Sulfur in Organic and Inorganic Chemistry, New York: Marcel Dekker, 1972, vols. 1–3.

    Google Scholar 

  40. Hayon, E., Treinin, A., and Wilf, J., Electronic spectra, photochemistry, and autoxidation mechanism of the sulfite-bisulfite-pyrosulfite systems. SO2–, SO3–, SO4–, and SO5– radicals, J. Am. Chem. Soc., 1972, vol. 94, pp. 47–57.

    Article  CAS  Google Scholar 

  41. Shi, X., Generation of \({\text{SO}}_{3}^{ - }\) and OH radicals in \({\text{SO}}_{3}^{{2 - }}\) reactions with inorganic environmental pollutants and its implications to \({\text{SO}}_{3}^{{2 - }}\) toxicity, J. Inorg. Biochem., 1994, vol. 56, pp. 155–165.

    Article  CAS  PubMed  Google Scholar 

  42. Oztekin, Y., Ramanaviciene, A., and Ramanavicius, A., Electrochemical glutathione sensor based on electrochemically deposited poly-m-aminophenol, Electroanalysis, 2011, vol. 23, no. 3, pp. 701–709.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. S. Gashevskaya.

Ethics declarations

We have no conflicts of interest to declare.

Additional information

Translated by P. Vlasov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gashevskaya, A.S., Dorozhko, E.V., Korotkova, E.I. et al. Voltammetric Method for Determination of Glutathione on a Gold-Carbon-Containing Electrode. Inorg Mater 56, 1362–1368 (2020). https://doi.org/10.1134/S0020168520140071

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0020168520140071

Keywords:

Navigation