Skip to main content
Log in

X-Ray Fluorescence Determination of Ore Elements in Ferromanganese Formations

  • SUBSTANCES ANALYSIS
  • Published:
Inorganic Materials Aims and scope

Abstract

Elemental analysis of ferromanganese formations (first of all, the determination of ore elements) is a necessary stage in the development of ore deposits. A technique for X-ray fluorescence quantitative analysis was proposed for the determination of iron, manganese, cobalt, nickel, copper, and zinc in oceanic ferromanganese formations (nodules and crusts). The studies were performed using a S4 Pioneer wavelength-dispersive spectrometer equipped with a LiF (200) crystal and a scintillation detector. In order to plot the calibration curves, sets of certified reference materials such as ferromanganese nodules, cobalt-bearing ferromanganese crusts, and pelagic sediments previously dried at 105°C for 24 h to remove hygroscopic moisture were used. Two sample preparation techniques were compared: pressing of powder samples with the use a boric acid substrate and homogenizing via fusion with lithium tetraborate at a ratio of 1 : 30 in an electric furnace at 1050°C. For each sample preparation technique, spectral overlaps and matrix correction methods (theoretical and empirical) were considered, and optimal calibration curves for determining ore elements were chosen. The accuracy of the X-ray fluorescence technique was assessed via analyzing a reference material FeMn-1 with a certified content of ore elements and a reference ferromanganese nodule sample preliminarily analyzed using a PerkinElmer M403 atomic absorption spectrometer. Both homogenization via fusion and analysis of pressed samples provide quantitative X-ray fluorescence determination of the main ore elements and can be used to assess the industrial significance of oceanic ferromanganese formations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.

Similar content being viewed by others

REFERENCES

  1. Avdonin, V.V., Kruglyakov V.V., Ponomareva I.N., and Titova E.V., Poleznye iskopaemye Mirovogo okeana (Minerals of the World Ocean), Moscow: Mosk. Gos. Univ., 2000.

  2. Bazilevskaya, E.S., Issledovanie zhelezo-margantsevykh rud okeana (The Study of Iron-Manganese Ores of the Ocean), Moscow: Nauka, 2007.

  3. Neil, S., Chemical analysis of USGS manganese nodule reference samples, Geostand. Geoanal. Res., 1980, vol. 4, pp. 205–212. https://doi.org/10.1111/j.1751-908X.1980.tb00286.x

    Article  Google Scholar 

  4. Bougault, H.P. and Martinelli, P., Dispersive and non-dispersive X-ray fluorescence for manganese nodule analysis on board research vessel, Deep-Sea Res. Oceanogr. Abstr., 1976, vol. 23, pp. 1075–1078. https://doi.org/10.1016/0011-7471(76)90884-6

    Article  CAS  Google Scholar 

  5. Friedrich, G.H.W., Kunzendorf, H., and Plüger, W.L., Ship-borne geochemical investigations of deep-sea manganese-nodule deposits in the Pacific using a radioisotope energy-dispersive X-ray system, J. Geochem. Explor., 1974, vol. 3, pp. 303–317. https://doi.org/10.1016/0375-6742(74)90001-6

    Article  CAS  Google Scholar 

  6. Wang, Y., Liang, G., and Teng, Y., Determination of multielement in manganese nodules on board using X‑ray fluorescence spectrometry, Rigaku J., 1992, vol. 9, no. 1, pp. 25–28.

    CAS  Google Scholar 

  7. Kaminskii, E.Yu., X-ray local investigation of the distribution of the main elements in the cuttings of ferromanganese nodules using BARS-3, Appar. Metody Rentgenovskogo Anal., 1989, no. 39, pp. 161–165.

  8. Puri, S., Shahi, J.S., Chand, B., et al., Elemental analysis of polymetallic nodules from the central Indian basin: a study using EDXRF, X-Ray Spectrom., 1998, vol. 27, pp. 105–110. https://doi.org/10.1002/(SICI)1097-4539(199803/04)27:2<105::AID-XRS258>3.0.CO;2-W

    Article  CAS  Google Scholar 

  9. Bobrov, V.A., Phedorin, M.A., Titov, A.T., and Baturin, G.N., Patterns of spatial distribution of elements in phosphate-free Fe–Mn Pacific nodule, Nucl. Instrum. Methods Phys. Res., Sect. A, 2009, vol. 603, nos. 1–2, pp. 144–146. https://doi.org/10.1016/j.nima.2008.12.180

    Article  CAS  Google Scholar 

  10. Kalinin, B.D. and Smyslov, A.A., X-ray fluorescence determination of the main rock-forming components of ferromanganese nodules, Zavod. Lab., Diagn. Mater., 2006, vol. 72, no. 6, pp. 17–20.

    CAS  Google Scholar 

  11. Pshenichnyi, G.A., Kaminskii, E.Yu., Leman, E.P., et al., The state and prospects for the development of methods for X-ray fluorescence analysis of substances in the laboratory and field conditions for their use, Ross. Geofiz. Zh., 2002, vols. 29–30, pp. 34–51.

    Google Scholar 

  12. Calvert, S.E., Cousens, B.L., and Soon, M.Y.S., An X‑ray fluorescence spectrometric method for the determination of major and minor elements in ferromanganese nodules, Chem. Geol., 1985, vol. 51, pp. 9–18. https://doi.org/10.1016/0009-2541(85)90083-X

    Article  CAS  Google Scholar 

  13. Cai, S., Guo, Y., and Li, J., Comprehensive major, minor and trace element analysis of a submarine polymetallic nodule by wavelength-dispersive x-ray fluorescence spectrometry, X-Ray Spectrom., 1992, vol. 21, pp. 17–20. https://doi.org/10.1002/xrs.1300210107

  14. Ichikawa, S. and Nakamura, T., Solid sample preparations and applications for X-ray fluorescence analysis, in Encyclopedia of Analytical Chemistry, Meyers, R.A., Ed., Hoboken, NJ: Wiley, 2016, pp. 1–22.

    Google Scholar 

  15. Chubarov, V.M., Finkelshtein, A.L., and Granina, L.Z., Determination of the content and valence state of iron and manganese in ferromanganese nodules using K-series emission lines of the X-ray fluorescence spectrum, Anal. Kontrol, 2010, vol. 14, no. 2, pp. 65–72.

    Google Scholar 

  16. Duimakaev, Sh.I. Shpolyanskii, A.Ya., and Zhuravlev, Yu.A., The heterogeneity of the analyzed samples in X-ray fluorescence spectrometry (an overview), Zavod. Lab., 1988, vol. 54, no. 12, pp. 24–34.

    CAS  Google Scholar 

  17. Losev, N.F., Kolichestvennyi rentgenospektral’nyi fluorestsentnyi analiz (Quantitative X-Ray Fluorescence Analysis), Moscow: Nauka, 1969.

  18. Nakayama, K. and Wagatsuma, K., Glass bead sample preparation for XRF, in Encyclopedia of Analytical Chemistry, Meyers, R.A., Ed., Hoboken, NJ: Wiley, 2017, pp. 1–19.

    Google Scholar 

  19. Borkhodoev, V.Ya., Penevskii, S.D., and Sotskaya, O.T., Preparation of doped glass lithium-borate discs for X‑ray fluorescence analysis of rocks at the VULCAN 4 smelting plant, Anal. Kontrol, 2013, vol. 17, no. 2, pp. 141–147. https://doi.org/10.15826/analitika.2013.17.2.002

    Article  Google Scholar 

  20. Jochum, K.P., Wilson, S.A., Becker, H., et al., FeMnOx–1: a new microanalytical reference material for the investigation of Mn–Fe rich geological samples, Chem. Geol., 2016, vol. 432, pp. 34–40. https://doi.org/10.1016/j.chemgeo.2016.03.026

    Article  CAS  Google Scholar 

  21. Flanagan, F.J. and Gottfried, D., USGS Rock Standards, III. Manganese-Nodule Reference samples USGS-Nod-A-1 and USGS-Nod-P-1, Geological Survey Professional Paper no. 1155, Washington, DC: US Gov. Print. Off., 1980.

  22. Bebeshko, G.I. and Goleva, R.V., Determination of the forms of halogens in ferromanganese oceanic ores by the ionometric method, Zavod. Lab., Diagn. Mater., 2012, vol. 78, no. 8, pp. 3–7.

    CAS  Google Scholar 

  23. Ohbuchi, A., Kitano, M., and Nakamura, T., Powder briquette/X-ray fluorescence analysis of major and minor elements in alkali-washed fly ash of municipal solid waste, X-Ray Spectrom., 2008, vol. 37, pp. 237–244. https://doi.org/10.1002/xrs.1046

    Article  CAS  Google Scholar 

  24. Simakov, V.A., Kordyukov, S.V., and Moshkova, M.V., Ensuring the reliability and comparability of the results of the analysis of ferromanganese nodules and cobalt-rich manganese crusts, Razved. Okhr. Nedr, 2013, no. 6, pp. 54–57.

  25. Amosova, A.A., Panteeva, S.V., Tatarinov, V.V., et al., X-ray fluorescence determination of the main rock-forming elements from samples weighing 50 and 110 mg, Anal. Kontrol, 2015, vol. 19, no. 2, pp. 130–138. https://doi.org/10.15826/analitika.2015.19.2.009

    Article  Google Scholar 

  26. Kriete, C., An evaluation of the inter-method discrepancies in ferromanganese nodule proficiency test GeoPT 23A, Geostand. Geoanal. Res., 2011, vol. 35, pp. 319–340. https://doi.org/10.1111/j.1751-908X.2010.00055.x

    Article  CAS  Google Scholar 

  27. Batjargal, D., Davaasuren, B., and Erdenetsetseg, D., Producing certified reference materials at the Central Geological Laboratory of Mongolia, Geostand. Geoanal. Res., 2010, vol. 34, pp. 231–236. https://doi.org/10.1111/j.1751-908X.2010.00076.x

    Article  CAS  Google Scholar 

Download references

Funding

This work was financially supported by the Russian Foundation for Basic Research (project no. 18-33-20104) and performed with the use of equipment at the Joint Use Centers Isotope-Geochemical Research of the Vinogradov Institute of Geochemistry, and Geodynamics and Geochronology of the Institute of the Earth’s Crust, Siberian Branch of the Russian Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. M. Chubarov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by O. Polyakov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chubarov, V.M., Amosova, A.A. & Finkelshtein, A.L. X-Ray Fluorescence Determination of Ore Elements in Ferromanganese Formations. Inorg Mater 56, 1423–1430 (2020). https://doi.org/10.1134/S0020168520140046

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0020168520140046

Keywords:

Navigation