Skip to main content
Log in

Nanotubular Nickel Hydrosilicate and Its Thermal Annealing Products as Anode Materials for Lithium Ion Batteries

  • Published:
Inorganic Materials Aims and scope

Abstract—

We have studied the performance of nanotubular nickel hydrosilicate and its derivatives as a negative electrode of lithium ion batteries. Nickel hydrosilicate with the composition Ni3Si2O5(OH)4 was synthesized under hydrothermal conditions (350°C, 14 MPa, 10 h). Its derivatives were prepared by thermal annealing at temperatures of 400, 600, and 1000°C. In this process, the tubular structure of the particles persisted up to 600°C, whereas at 1000°C well-crystallized Ni2SiO4 was formed. Charge/discharge cycles were performed in the voltage range 0.05–3 V at a specific current of 10 mA/g. Heat treatment was shown to increase discharge capacity and reversible capacity in the first cycle. The highest performance was offered by the material heat-treated at 400°C: its discharge capacity reached 678 mAh/g and its reversible capacity was 58% in the first cycle and 85% in subsequent cycles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. Yoshino, A., Sanechika, K., and Nakajima, Jpn. Patent 1989293/5, 1985.

  2. Nagura, T. and Tazawa, K., Prog. Batteries Sol. Cells, 1990, vol. 9, pp. 20–29.

    Google Scholar 

  3. Tarascon, J.-M. and Armand, M., Issues and challenges facing rechargeable lithium batteries, Mater. Sustainable Energy, 2011, vol. 414, pp. 171–179. https://doi.org/10.1142/9789814317665_0024

    Article  Google Scholar 

  4. Perla, B.B. and Yixuan, W., Lithium-Ion Batteries: Solid-Electrolyte Interphase, London: Imperial College Press, 2004, p. 407.

    Google Scholar 

  5. Kazunori, O., Lithium-ion rechargeable batteries with LiCoO2 and carbon electrodes: the LiCoO2/C system, Solid State Ionics, 1994, vol. 69, nos. 3–4, pp. 212–221.https://doi.org/10.1016/0167-2738(94)90411-1

    Article  Google Scholar 

  6. Xue, L., Savilov, S.V., Lunin, V.V., and Xia, H., Self-standing porous LiCoO2 nanosheet arrays as 3D cathodes for flexible Li-ion batteries, Adv. Funct. Mater., 2018, vol. 28, no. 7, paper 1705836.https://doi.org/10.1002/adfm.201705836

  7. Da Silva, S.P., Sita, L.E., dos Santos, C.S., Pavoni, F.H., de Santana, H., Andrello, A.C., and Scarminio, J., Physical and chemical characterization of LiCoO2 cathode material extracted from commercial cell phone batteries with low and high states of health, Mater. Chem. Phys., 2018, vol. 213, pp. 198–207.https://doi.org/10.1016/j.matchemphys.2018.04.038

    Article  CAS  Google Scholar 

  8. Yang, Q., Huang, J., Li, Y., Wang, Y., Qiu, J., Zhang, J., and Chen, L., Surface-protected LiCoO2 with ultrathin solid oxide electrolyte film for high-voltage lithium ion batteries and lithium polymer batteries, J. Power Sources, 2018, vol. 388, pp. 65–70.https://doi.org/10.1016/j.jpowsour.2018.03.076

    Article  CAS  Google Scholar 

  9. Padhi, A.K., Nanjundaswam, K., and Goodenough, J.B., Phospho-olivines as positive-electrode materials for rechargeable lithium batteries, J. Electrochem. Soc., 1997, vol. 144, no. 4, pp. 1184–1194.https://doi.org/10.1149/1.1837571

    Article  Google Scholar 

  10. An, C., Zhang, B., Tang, L., Xiao, B., and Zheng, J., Ultrahigh rate and long-life nano-LiFePO4 cathode for Li-ion batteries, Electrochim. Acta, 2018, vol. 283, pp. 385–392.https://doi.org/10.1016/j.electacta.2018.06.149

    Article  CAS  Google Scholar 

  11. Huang, S., Ren, J., Liu, R., Bai, Y., Li, X., Huang, Y., and Yuan, G., Enhanced electrochemical properties of LiFePO4 cathode using waterborne lithiated ionomer binder in Li-ion batteries with low amount, ACS Sustainable Chem. Eng., 2018, vol. 6, no. 10, pp. 12650–12657.https://doi.org/10.1021/acssuschemeng.8b01532

    Article  CAS  Google Scholar 

  12. Bao, L., Xu, G., and Wang, M., Controllable synthesis and morphology evolution of hierarchical LiFePO4 cathode materials for Li-ion batteries, Mater. Character., 2019, vol. 157, paper 109927.https://doi.org/10.1016/j.matchar.2019.109927

  13. Macklin, W.J., Neat, J., and Powel, R.J., Performance of lithium–manganese oxide spinel electrodes in a lithium polymer electrolyte cell, J. Power Sources, 1991, vol. 34, no. 1, pp. 39–49.https://doi.org/10.1016/0378-7753(91)85022-O

    Article  CAS  Google Scholar 

  14. Yu, X., Deng, J., Yang, X., Li, J., Huang, Z.H., Li, B., and Kang, F., A dual-carbon-anchoring strategy to fabricate flexible LiMn2O4 cathode for advanced lithium-ion batteries with high areal capacity, Nano Energy, 2020, vol. 67, paper 104256.https://doi.org/10.1016/j.nanoen.2019.104256

  15. Huang, W., Wang, G., Luo, C., Xu, Y., Xu, Y., Eckstein, B.J., and Wu, J., Controllable growth of LiMn2O4 by carbohydrate-assisted combustion synthesis for high performance Li-ion batteries, Nano Energy, 2019, vol. 64, paper 103936.https://doi.org/10.1016/j.nanoen.2019.103936

  16. Ha, Y., Zhang, Z., Liu, H., Liao, L., Fan, P., Wu, Y., and Mei, L., Facile controlled synthesis of spinel LiMn2O4 porous microspheres as cathode material for lithium ion batteries, Frontiers Chem., 2019, vol. 7, no. 437, pp. 1–10.https://doi.org/10.3389/fchem.2019.00437

    Article  CAS  Google Scholar 

  17. Wolfgang, H.M., Electrolyte polymer electrolytes for lithium-ion batteries, Adv. Mater., 1999, vol. 10, no. 6, pp. 439–448.https://doi.org/10.1002/(SICI)1521-4095(199804)10:6<439::AID-ADMA439>3.0.CO;2-I

    Article  Google Scholar 

  18. Paled, E., The electrochemical behavior of alkali and alkaline earth metals in nonaqueous battery systems—the solid electrolyte interphase model, J. Electrochem. Soc., 1979, vol. 126, no. 12, pp. 2047–2051.https://doi.org/10.1149/1.2128859

    Article  Google Scholar 

  19. Balaya, P., Li, H., Kienle, L., and Maier, J., Fully reversible homogeneous and heterogeneous Li storage in RuO2 with high capacity, Adv. Funct. Mater., 2003, vol. 13, no. 8, pp. 621–625.https://doi.org/10.1002/adfm.200304406

    Article  CAS  Google Scholar 

  20. Boukamp, B.A., Lesh, G.C., and Huggins, R.A., All-solid lithium electrodes with mixed-conductor matrix, J. Electrochem. Soc., 1981, vol. 128, no. 4, pp. 725–729.https://doi.org/10.1149/1.2127495

    Article  CAS  Google Scholar 

  21. Zuo, X., Zhu, J., Müller-Buschbaum, P., and Cheng, Y.J., Silicon based lithium-ion battery anodes: a chronicle perspective review, Nano Energy, 2017, vol. 31, pp. 113–143.https://doi.org/10.1016/j.nanoen.2016.11.013

    Article  CAS  Google Scholar 

  22. Feng, K., Li, M., Liu, W., Kashkooli, A.G., Xiao, X., Cai, M., and Chen, Z., Silicon-based anodes for lithium-ion batteries: from fundamentals to practical applications, Small, 2018, vol. 14, no. 8, paper 1702737.https://doi.org/10.1002/smll.201702737

  23. Yoshio, M., Tsumura, T., and Dimov, N., Electrochemical behaviors of silicon based anode material, J. Power Sources, 2005, vol. 146, nos. 1–2, pp. 10–14.https://doi.org/10.1016/j.jpowsour.2005.03.143

    Article  CAS  Google Scholar 

  24. Winter, M. and Besenhard, J.O., Electrochemical lithiation of tin and tin-based intermetallics and composites, Electrochim. Acta, 1999, vol. 45, nos. 1–2, pp. 31–50.https://doi.org/10.1016/S0013-4686(99)00191-7

    Article  CAS  Google Scholar 

  25. Courtney, I.A. and Dahn, J.R., Electrochemical and in situ X-ray diffraction studies of the reaction of lithium with tin oxide composites, J. Electrochem. Soc., 1997, vol. 144, no. 6, pp. 2045–2052.https://doi.org/10.1149/1.1837740

    Article  CAS  Google Scholar 

  26. Arico, A.S., Bruce, P., Scrosati, B., Tarascon, J.M., and Schalkwijk, W.V., Local conductivity effects in polymer electrolytes, Nat. Mater., 2005, vol. 4, pp. 366–371.

    Article  CAS  Google Scholar 

  27. Jiang, C., Hosono, E., and Zhou, H., Nanomaterials for lithium ion batteries, Nano Today, 2006, vol. 1, no. 4, pp. 28–33.https://doi.org/10.1016/S1748-0132(06)70114-1

    Article  Google Scholar 

  28. Tiwari, J.N., Tiwari, R.N., and Kim, K.S., Zero-dimensional, one-dimensional, two-dimensional and three-dimensional nanostructured materials for advanced electrochemical energy devices, Prog. Mater. Sci., 2012, vol. 57, no. 4, pp. 724–803.https://doi.org/10.1016/j.pmatsci.2011.08.003

    Article  CAS  Google Scholar 

  29. Zhu, C., Mu, X., van Aken, P.A., Maier, J., and Yu, Y., Fast Li storage in MoS2–graphene–carbon nanotube nanocomposites: advantageous functional integration of 0D, 1D, and 2D nanostructures, Adv. Energy Mater., 2015, vol. 5, no. 4, paper 1401170.https://doi.org/10.1002/aenm.201401170

  30. Wang, B., Luo, B., Li, X., and Zhi, L., The dimensionality of Sn anodes in Li-ion batteries, Mater. Today, 2012, vol. 15, no. 12, pp. 544–552.https://doi.org/10.1016/S1369-7021(13)70012-9

    Article  CAS  Google Scholar 

  31. Xia, Y., Yang, P., Sun, Y., Wu, Y., Mayers, B., Gates, B., and Yan, H., One-dimensional nanostructures: synthesis, characterization, and applications, Adv. Mater., 2003, vol. 15, no. 5, pp. 353–389.https://doi.org/10.1016/S1369-7021(13)70012-9

    Article  CAS  Google Scholar 

  32. Wang, K., Wei, M., Morris, M.A., Zhou, H., and Holmes, J.D., Mesoporous titania nanotubes: their preparation and application as electrode materials for rechargeable lithium batteries, Adv. Mater., 2007, vol. 19, no. 19, pp. 3016–3020.https://doi.org/10.1002/adma.200602189

    Article  CAS  Google Scholar 

  33. Lou, X.W., Archer, L.A., and Yang, Z., Hollow micro-/ nanostructures: synthesis and applications, Adv. Mater., 2008, vol. 20, no. 21, pp. 3987–4019.https://doi.org/10.1002/adma.200800854

    Article  CAS  Google Scholar 

  34. Krasilin, A.A., Nevedomsky, V.N., and Gusarov, V.V., Comparative energy modeling of multiwalled Mg3Si2O5(OH)4 and Ni3Si2O5(OH)4 nanoscroll growth, J. Phys. Chem. C, 2017, vol. 121, no. 22, pp. 12495–12502.https://doi.org/10.1021/acs.jpcc.7b03785

    Article  CAS  Google Scholar 

  35. Alvarez-Ramírez, F., Toledo-Antonio, J.A., Angeles-Chavez, C., Guerrero-Abreo, J.H., and López-Salinas, E., Complete structural characterization of Ni3Si2O5(OH)4 nanotubes: theoretical and experimental comparison, J. Phys. Chem. C, 2011, vol. 115, no. 23, pp. 11442–11446.https://doi.org/10.1021/jp201941x

    Article  CAS  Google Scholar 

  36. White, R.D., Bavykin, D.V., and Walsh, F.C., Morphological control of synthetic Ni3Si2O5(OH)4 nanotubes in an alkaline hydrothermal environment, J. Mater. Chem. A, 2013, vol. 1, no. 3, pp. 548–556.https://doi.org/10.1039/C2TA00257D

    Article  CAS  Google Scholar 

  37. Korytkova, E.N. and Pivovarova, L.N., Hydrothermal synthesis of nanotubes based on (Mg,Fe,Co,Ni)3Si2O5(OH)4 hydrosilicates, Glass Phys. Chem., 2010, vol. 36, no . 1, pp. 53–60.https://doi.org/10.1134/S1087659610010104

  38. Korytkova, E.N., Maslov, A.V., Pivovarova, L.N., Polegotchenkova, Yu.V., Povinich, V.F., and Gusarov, V.V., Synthesis of nanotubular Mg3Si2O5(OH)4–Ni3Si2O5(OH)4 silicates at elevated temperatures and pressures, Inorg. Mater., 2005, vol. 41, no. 7, pp. 743–749.https://doi.org/10.1007/s10789-005-0202-1

    Article  CAS  Google Scholar 

  39. Krasilin, A.A. and Gusarov, V.V., Redistribution of Mg and Ni cations in crystal lattice of conical nanotube with chrysotile structure, Nanosyst.: Phys. Chem. Math., 2017, vol. 8, no. 5, pp. 620–627.https://doi.org/10.17586/22208054201785620627

    Article  CAS  Google Scholar 

  40. Yang, Y., Liang, Q., Li, J., Zhuang, Y., He, Y., Bai, B., and Wang, X., Ni3Si2O5(OH)4 multi-walled nanotubes with tunable magnetic properties and their application as anode materials for lithium batteries, Nano Res., 2011, vol. 4, no. 9, pp. 882–885.https://doi.org/10.1007/s12274-011-0144-7

    Article  CAS  Google Scholar 

  41. Wang, Q., Zhang, Y., Jiang, H., Hu, T., and Meng, C., In situ generated Ni3Si2O5(OH)4 on mesoporous heteroatom-enriched carbon derived from natural bamboo leaves for high-performance supercapacitors, ACS Appl. Energy Mater., 2018, vol. 1, no. 7, pp. 3396–3409.https://doi.org/10.1021/acsaem.8b00556

    Article  CAS  Google Scholar 

  42. Krasilin, A.A., Danilovich, D.P., Yudina, E.B., Bruyere, S., Ghanbaja, J., and Ivanov, V.K., Crystal violet adsorption by oppositely twisted heat-treated halloysite and pecoraite nanoscrolls, Appl. Clay Sci., 2019, vol. 173, pp. 1–11.https://doi.org/10.1016/j.clay.2019.03.007

    Article  CAS  Google Scholar 

  43. Sarvaramini, A. and Larachi, F., Mossbauer spectroscopy and catalytic reaction studies of chrysotile-catalyzed steam reforming of benzene, J. Phys. Chem. C, 2011, vol. 115, no. 14, pp. 6841–6848.https://doi.org/10.1021/jp2005309

    Article  CAS  Google Scholar 

  44. Sarvaramini, A. and Larachi, F., Catalytic oxygenless steam cracking of syngas-containing benzene model tar compound over natural Fe-bearing silicate minerals, Fuel, 2012, vol. 97, pp. 741–750.https://doi.org/10.1016/j.fuel.2012.02.039

    Article  CAS  Google Scholar 

  45. Wu, K., Shao, L., Jiang, X., Shui, M., Ma, R., Lao, M., and Shu, J., Facile preparation of [Bi6O4](OH)4(NO3)6 · 4H2O, [Bi6O4](OH)4(NO3)6 · H2O and [Bi6O4](OH)4(NO3)6 · H2O/C as novel high capacity anode materials for rechargeable lithium-ion batteries, J. Power Sources, 2014, vol. 254, pp. 88–97.https://doi.org/10.1016/j.jpowsour.2013.12.121

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The X-ray powder diffraction characterization of the samples was performed at the Engineering Center, St. Petersburg State Institute of Technology (Technical University).

We are grateful to V.V. Gusarov, corresponding member of the Russian Academy of Sciences, for his valuable suggestions regarding our work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. K. Khrapova.

Additional information

Translated by O. Tsarev

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khrapova, E.K., Ezhov, I.S., Rumyantsev, A.M. et al. Nanotubular Nickel Hydrosilicate and Its Thermal Annealing Products as Anode Materials for Lithium Ion Batteries. Inorg Mater 56, 1248–1257 (2020). https://doi.org/10.1134/S0020168520120092

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0020168520120092

Keywords:

Navigation