Skip to main content
Log in

Ferroelectric Photonic Crystals from Anodic Aluminum Oxide Filled with Sodium Nitrite

  • Published:
Inorganic Materials Aims and scope

Abstract—

One-dimensional ferroelectric photonic crystals have been produced by filling porous anodic aluminum oxide with sodium nitrite. Introducing sodium nitrite into the pores of the photonic crystals has been shown to cause a 40-nm bathochromic shift in the spectral position of their bandgap. The results of this study demonstrate the feasibility of using aluminum oxide-based composite photonic crystals as narrow-band selective mirrors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. Bykov, V.P., Spontaneous emission in a periodic structure, Zh. Eksp. Teor. Fiz., 1972, vol. 62, pp. 505–513.

    CAS  Google Scholar 

  2. Yeh, P., Yariv, A., and Hong, C.-S., Electromagnetic propagation in periodic stratified media, J. Opt. Soc. Am., 1977, vol. 67, pp. 423–428.

    Google Scholar 

  3. Yablonovitch, E., Inhibited spontaneous emission in solid-state physics and electronics, Phys. Rev. Lett., 1987, vol. 58, pp. 2059–2062.

    CAS  PubMed  Google Scholar 

  4. John, S., Strong localization of photons in certain disordered dielectric superlattices, Phys. Rev. Lett., 1987, vol. 58, pp. 2486–2487.

    CAS  PubMed  Google Scholar 

  5. Astratov, V.N., Bogomolov, V.N., Kaplyanskii, A.A., Prokofiev, A.V., Samoilovich, L.A., Samoilovich, S.M., and Vlasov, Yu.A., Optical spectroscopy of opal matrices with CdS embedded in its pores: quantum confinement and photonic band gap effects, Nuovo Cimento Soc. Ital. Fis., D, 1995, vol. 17, pp. 1349–1354.

  6. Romanov, S.G., Johnson, N.P., Fokin, A.V., Butko, V.Y., Yates, H.M., Pemble, M.E., and Sotomayor Torres, C.M., Enhancement of the photonic gap of opal-based three-dimensional gratings, Appl. Phys. Lett., 1997, vol. 70, pp. 2091–2093.

    CAS  Google Scholar 

  7. Bogomolov, V.N., Gaponenko, S.V., Germanenko, I.N., Kapitonov, A.M., Petrov, E.P., Gaponenko, N.V., Prokofiev, A.V., Ponyavina, A.N., Silvanovich, N.I., and Samoilovich, S.M., Photonic band gap phenomenon and optical properties of artificial opals, Phys. Rev. E: Stat. Phys., Plasmas, Fluids, Relat. Interdiscip. Top., 1997, vol. 55, pp. 7619–7625.

    CAS  Google Scholar 

  8. Reynolds, A., Tejeira, F., Cassagne, D., Vidal, F.J., Jouanin, C., and Dehesa, J., Spectral properties of opal-based photonic crystals having a SiO2 matrix, Phys. Rev. B: Condens. Matter Mater. Phys., 1999, vol. 60, pp. 11422–11426.

    CAS  Google Scholar 

  9. Vlasov, Yu.A., Astratov, V.N., Baryshev, A.V., Kaplyanskii, A.A., Karimov, O.Z., and Limonov, M.F., Manifestation of intrinsic defects in optical properties of self-organized opal photonic crystals, Phys. Rev. E: Stat. Phys., Plasmas, Fluids, Relat. Interdiscip. Top., 2000, vol. 61, pp. 5784–5790.

    CAS  Google Scholar 

  10. Galisteo-Lypez, J.F., Palacios-Lidyn, E., Castillo-Martinez, E., and Lypez, C., Optical study of the pseudogap in thickness and orientation controlled artificial opals, Phys. Rev. B: Condens. Matter Mater. Phys., 2003, vol. 68, paper 115109.

  11. Pavarini, E., Andreani, L.C., Soci, C., Galli, M., Marabelli, F., and Comoretto, D., Band structure and optical properties of opal photonic crystals, Phys. Rev. B: Condens. Matter Mater. Phys., 2005, vol. 72, paper 045102.

  12. Pokrovsky, A.L., Kamaev, V., Li, C.Y., Vardeny, Z.V., Efros, A.L., Kurdyukov, D.A., and Golubev, V.G., Theoretical and experimental studies of metal-infiltrated opals, Phys. Rev. B: Condens. Matter Mater. Phys., 2005, vol. 71, paper 165114.

  13. Gajiev, G.M., Golubev, V.G., Kurdyukov, D.A., Medvedev, A.V., Pevtsov, A.B., Sel’kin, A.V., and Travnikov, V.V., Bragg reflection spectroscopy of opal-like photonic crystals, Phys. Rev. B: Condens. Matter Mater. Phys., 2005, vol. 72, paper 205115.

  14. Ivchenko, E.L. and Poddubnyi, A.N., Resonant three-dimensional photonic crystals, Phys. Solid State, 2006, vol. 48, no. 3, pp. 581–588.

    CAS  Google Scholar 

  15. Baryshev, A.V., Kosobukin, V.A., Samusev, K.B., Usvyat, D.E., and Limonov, M.F., Light diffraction from opal-based photonic crystals with growth-induced disorder: experiment and theory, Phys. Rev. B: Condens. Matter Mater. Phys., 2006, vol. 73, paper 205118.

  16. Gorelik, V.S., Optics of globular photonic crystals, Quantum Electron. (Moscow), 2007, vol. 37, no. 5, pp. 409–432.

    CAS  Google Scholar 

  17. Kapitonov, A.M., One-dimensional opal photonic crystals, Photonics Nanostr. –Fundam. Appl., 2008, vol. 6, pp. 194–199.

    Google Scholar 

  18. Ding, B., Pemble, M.E., Korovin, A.V., Peschel, U., and Romanov, S.G., Three-dimensional photonic crystals with an active surface: gold film terminated opals, Phys. Rev. B: Condens. Matter Mater. Phys., 2010, vol. 82, paper 035119.

  19. Muskens, O.L., Koenderink, A.F., and Vos, W.L., Broadband coherent backscattering spectroscopy of the interplay between order and disorder in three-dimensional opal photonic crystals, Phys. Rev. B: Condens. Matter Mater. Phys., 2011, vol. 83, paper 155101.

  20. Rybin, M.V., Sinev, I.S., Samusev, A.K., Samusev, K.B., Trofimova, E.Yu., Kurdyukov, D.A., Golubev, V.G., and Limonov, M.F., Dimensionality effects on the optical diffraction from opal-based photonic structures, Phys. Rev. B: Condens. Matter Mater. Phys., 2013, vol. 87, paper 125131.

  21. Boiko, V., Dovbeshko, G., Dolgov, L., Kiisk, V., Sildos, I., Loot, A., and Gorelik, V., Angular shaping of fluorescence from synthetic opal-based photonic crystal, Nanoscale Res. Lett., 2015, vol. 10, pp. 97–102.

    PubMed  PubMed Central  Google Scholar 

  22. Voinov, Yu.P., Gorelik, V.S., Zaitsev, K.I., Zlobina, L.I., Sverbil’, P.P., and Yurchenko, S.O., Second optical harmonic near the surface of ferroelectric photonic crystals and photon traps, Phys. Solid State, 2015, vol. 57, no. 3, pp. 453–459.

    CAS  Google Scholar 

  23. Zaytsev, K.I., Katyba, G.M., Yakovlev, E.V., Gorelik, V.S., and Yurchenko, S.O., Band-gap nonlinear optical generation: the structure of internal optical field and the structural light focusing, J. Appl. Phys., 2014, vol. 115, paper 213505.

  24. Yurchenko, S.O., Zaytsev, K.I., Gorbunov, E.A., Yakovlev, E.V., Zotov, A.K., Masalov, V.M., Emelchenko, G.A., and Gorelik, V.S., Enhanced third-harmonic generation in photonic crystals at band-gap pumping, J. Phys. D: Appl. Phys., 2017, vol. 50, paper 055105.

  25. Masuda, H., Ohya, M., Asoh, H., Nakao, M., Nohtomi, M., and Tamamura, T., Photonic crystal using anodic porous alumina, Jpn. J. Appl. Phys., 1999, vol. 38, pp. L1403–L1408.

    Google Scholar 

  26. Choi, J., Luo, Y., Wehrspohn, R.B., Hillebrand, R., Schilling, J., and Gosele, U., Perfect two-dimensional porous alumina photonic crystals with duplex oxide layers, J. Appl. Phys., 2003, vol. 94, pp. 4757–4762.

    CAS  Google Scholar 

  27. Wang, B., Fei, G.T., Wang, M., Kong, M.G., and Zhang, L.D., Preparation of photonic crystals made of air pores in anodic alumina, Nanotechnology, 2007, vol. 18, paper 365601.

  28. Liu Yisen, Chang Yi, Ling Zhiyuan, Hu Xing, and Li Yi, Structural coloring of aluminum, Electrochem. Commun., 2011, vol. 13, pp. 1336–1339.

    CAS  Google Scholar 

  29. Li, S.-Y., Wang, J., Wang, G., Wang, J.-Z., and Wang, C.-W., Fabrication of one-dimensional alumina photonic crystals by anodization using a modified pulse-voltage method, Mater. Res. Bull., 2015, vol. 68, pp. 42–48.

    CAS  Google Scholar 

  30. Gorelik, V.S., Klimonsky, S.O., Filatov, V.V., et al., Optical properties of one-dimensional photonic crystals based on porous films of anodic aluminum oxide, Opt. Spectrosc., 2016, vol. 120, no. 4, pp. 534–539.

    CAS  Google Scholar 

  31. Gorelik, V.S., Bi, D., and Fei, G.T., Optical properties of mesoporous photonic crystals, filled with dielectrics, ferroelectrics and piezoelectrics, J. Adv. Dielectr., 2017, vol. 7, paper 1750038.

  32. Su, Y., Fei, G.T., Zhang, Y., Li, H., Yan, P., Shang, G.L., and Zhang, L.D., Anodic alumina photonic crystal heterostructures, J. Opt. Soc. Am. B: Opt. Phys., 2011, vol. 28, pp. 2931–2933.

    CAS  Google Scholar 

  33. Bellingeri, M. and Scotognella, F., Light transmission behaviour as a function of the homogeneity in one dimensional photonic crystals, Photonics Nanostr. –Fundam. Appl., 2012, vol. 10, pp. 126–130.

    Google Scholar 

  34. Shang, G.L., Fei, G.T., Zhang, Y., Yan, P., Xu, S.H., Hao Miao Ouyang, and Zhang, L.D., Fano resonance in anodic aluminum oxide based photonic crystals, Sci. Rep., 2014, vol. 4, pp. 3601–3606.

    PubMed  PubMed Central  Google Scholar 

  35. Ferré-Borrull, J., Rahman, M.M., Josep Pallarus, J., and Marsal, L.F., Tuning nanoporous anodic alumina distributed-Bragg reflectors with the number of anodization cycles and the anodization temperature, Nanoscale Res. Lett., 2014, vol. 9, pp. 416–422.

    PubMed  PubMed Central  Google Scholar 

  36. Wang, G., Wang, J., Li, S.-Y., Zhang, J.-W., and Wang, C.-W., One-dimensional alumina photonic crystals with a narrow band gap and their applications to high-sensitivity concentration sensor and photoluminescence enhancement, Superlattices Microstr., 2015, vol. 86, pp. 546–551.

    CAS  Google Scholar 

  37. Chen, Y., Santos, A., Wang, Y., Kumeria, T., Ho, D., Li, J., Wang, C., and Losic, D., Rational design of photonic dust from nanoporous anodic alumina films: a versatile photonic nanotool for visual sensing, Sci. Rep., 2015, vol. 5, paper 12893.

  38. Santos, A., Nanoporous anodic alumina photonic crystals: fundamentals, developments and perspectives, J. Mater. Chem. C, 2017, vol. 5, paper 5581.

  39. Gorelik, V.S., Yashin, M.M., Bi, D., et al., Transmission spectra and optical properties of a mesoscopic photonic crystal based on anodic aluminum oxide, Opt. Spectrosc., 2018, vol. 124, no. 2. pp. 167–173.

    CAS  Google Scholar 

  40. Gorelik, V.S., Sverbil, P.P., Filatov, V.V., Bi, D., Fei, G.T., and Xu, S.H., Transmission spectra of one-dimensional porous alumina photonic crystals, Photonics Nanostr. –Fundam. Appl., 2018, vol. 32, pp. 6–10.

    Google Scholar 

  41. Sverbil, P.P., Gorelik, V.S., Bi, D., Fei, G.T., Xu, S.H., and Gao, X.D., Angular dependences of transmission spectra of photonic-crystal films based on aluminum oxide, Opt. Spectrosc., 2019, vol. 127, no. 4, pp. 602–604.

    CAS  Google Scholar 

  42. Sverbil, P.P. and Gorelik, V.S., Reflection spectra of composite photonic crystals based on anodic alumina filled with ferroelectric sodium nitrite, Phys. Wave Phenomena, 2019, vol. 27, pp. 275–279.

    Google Scholar 

  43. Born, M. and Wolf, E., Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light, Cambridge: Cambridge Univ. Press, 1999, 7th ed.

    Google Scholar 

  44. Yariv, A. and Yeh, P., Optical Waves in Crystals: Propagation and Control of Laser Radiation, Hoboken: Wiley, 2003.

    Google Scholar 

  45. Ashurov, M., Gorelik, V., Napolskii, K., and Klimonsky, S., Anodic alumina photonic crystals as refractive index sensors for controlling the composition of liquid mixtures, Photonic Sens., 2020, vol. 10, pp. 147–154.

    CAS  Google Scholar 

Download references

Funding

This work was supported by the Russian Foundation for Basic Research, grant nos. 18-02-00181 and 20-52-00002.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. S. Gorelik.

Additional information

Translated by O. Tsarev

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gorelik, V.S., Sverbil, P.P. Ferroelectric Photonic Crystals from Anodic Aluminum Oxide Filled with Sodium Nitrite. Inorg Mater 56, 1101–1105 (2020). https://doi.org/10.1134/S0020168520110023

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0020168520110023

Keywords:

Navigation