Skip to main content
Log in

Mechanisms of Upconversion Luminescence in BaF2–HoF3 Crystals under Excitation to the 5I5 Level of Ho3+ Ions

  • Published:
Inorganic Materials Aims and scope

Abstract

We report a study of upconversion luminescence in BaF2–HoF3 crystals in the visible spectral region under excitation to the 5I5 level of Ho3+ ions by laser radiation with a wavelength of 890 nm. For these excitation conditions, we propose mechanisms responsible for upconversion luminescence from the 5F3, 5S2(5F4) and 5F5 levels of Ho3+ ions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Auzel, F., Upconversion and anti-Stokes processes with f and d ions in solids, Chem. Rev., 2004, vol. 104, no. 1, pp. 139–174. https://doi.org/10.1021/cr020357g

    Article  CAS  PubMed  Google Scholar 

  2. Moglia, F., Müller, S., Reichert, F., Metz, P., Calmano, T., Kränkel, C., Heumann, E., and Huber, G., Efficient upconversion-pumped continuous wave Er3+:LiLuF4 lasers, Opt. Mater., 2015, vol. 42, pp. 167–173. https://doi.org/10.1016/j.optmat.2015.01.004

    Article  CAS  Google Scholar 

  3. Vetrone, F., Naccache, R., Zamarrón, A., Juarranz de la Fuente, A., Sanz-Rodríguez, F., Martinez Maestro, L., Martín Rodriguez, E., Jaque, D., García Solé, J., and Capobianco, J.A., Temperature sensing using fluorescent nanothermometers, ACS Nano, 2010, vol. 4, no. 6, pp. 3254–3258. https://doi.org/10.1021/nn100244a

    Article  CAS  PubMed  Google Scholar 

  4. Lyapin, A.A., Ryabochkina, P.A., Ushakov, S.N., and Fedorov, P.P., Visualiser of two-micron laser radiation based on Ho:CaF2 crystals, Quantum Electron., 2014, vol. 44, no. 6, pp. 602–605. https://doi.org/ QE2014v044n06ABEH015423

  5. Krut’ko V.A., Ryabova A.V., Komova M.G., Popov A.V., Volkov V.V., Kargin Yu.F., and Loshchenov V.B., Synthesis and luminescence of ultrafine Er3+- and Yb3+-doped Gd11SiP3O26 and Gd14B6Ge2O34 particles for cancer diagnostics, Inorg. Mater., 2013, vol. 49, no. 1, pp. 76–81. https://doi.org/10.1134/S0020168513010044

    Article  CAS  Google Scholar 

  6. Georgobiani, A.N., Gruzintsev, A.N., Barthou, C, and Benalloul, P., Infrared luminescence of Y2O2S:Er3+ and Y2O3:Er3+, Inorg. Mater., 2004, vol. 40, no. 8. pp. 840–844. https://doi.org/10.1023/B:INMA.0000037930.59049.0b

    Article  CAS  Google Scholar 

  7. Dong, N.N., Pedroni, M., Piccinelli, F., Conti, G., Sbarbati, A., Enrique Ramírez-Hernández, J., Martínez Maestro, L., Carmen Iglesias-de la Cruz, M., Sanz-Rodriguez, F., Juarranz, A., Chen, F., Vetrone, F., Capobianco, J.A., García Sole, J., Bettinelli, M., Jaque, D., and Speghini, A., NIR-to-NIR two-photon excited CaF2: Tm3+,Yb3+ nanoparticles: multifunctional nanoprobes for highly penetrating fluorescence bio-imaging, ACS Nano, 2011, vol. 5, no. 11, pp. 8665–8671. https://doi.org/10.1021/nn202490m

    Article  CAS  PubMed  Google Scholar 

  8. Gnach, A. and Bednarkiewicz, A., Lanthanide-doped up-converting nanoparticles: merits and challenges, Nano Today, 2012, vol. 7, no. 6, pp. 532–563. https://doi.org/10.1016/j.nantod.2012.10.006

    Article  CAS  Google Scholar 

  9. Hu, H., Yu, M., Li, F., Chen, Z., Gao, X., Xiong, L., and Huang, Ch., Facile epoxidation strategy for producing amphiphilic up-converting rare-earth nanophosphors as biological labels, Chem. Mater., 2008, vol. 20, pp. 7003–7009. https://doi.org/10.1021/cm801215t

    Article  CAS  Google Scholar 

  10. Wnuk, A., Kaczkan, M., Frukacz, Z., Pracka, I., Chadeyron, G., Joubert, M.-F., and Malinowskia, M., Infra-red to visible up-conversion in holmium-doped materials, J. Alloys Compd., 2002, vol. 341, nos. 1–2, pp. 353–357. https://doi.org/10.1016/S0925-8388(02)00036-1

    Article  CAS  Google Scholar 

  11. Bullock, S.R., Reddy, B.R., and Venkateswarlu, P., Site-selective energy upconversion in CaF2:Ho3+, J. Opt. Soc. Am. B, 1997, vol. 14, no. 3, pp. 553–559. https://doi.org/10.1364/JOSAB.14.000553

    Article  CAS  Google Scholar 

  12. Lee, T.H., Heo, J., Choi, Y.G., Park, B.J., and Chung, W.J., Emission properties of Ho3+/Tb3+ Co-doped in Ge30Ga2As8S60 glass, J. Appl. Phys., 2004, vol. 96, no. 9, paper 4827. https://doi.org/10.1063/1.1796519

  13. Choi, Y.-G., Park, B.-J., and Kim, K.-H., US Patent 6583927 B2, 2003.

  14. Pak, A.M., Ermakova, Yu.A., Kuznetsov, S.V., Ryabova, A.V., Pominova, D.V., and Voronov, V.V., Efficient visible range SrF2:Yb:Er- and SrF2:Yb:Tm-based up-conversion luminophores, J. Fluorine Chem., 2017, vol. 194, pp. 16–22. https://doi.org/10.1016/j.jfluchem.2016.12.002

    Article  CAS  Google Scholar 

  15. Seelbinder, M.B. and Wright, J.C., Site-selective spectroscopy of CaF2.Ho3+, Phys. Rev. B: Condens. Matter Mater. Phys., 1979, vol. 20, no. 10, pp. 4308–4320. https://doi.org/10.1103/PhysRevB.20.4308

    Article  CAS  Google Scholar 

  16. Kazanskii, S.A., Ryskin, A.I., Nikiforov, A.E., Zaharov, A.Yu., Ougrumov, M.Yu., and Shakurov, G.S., EPR spectra and crystal field of hexamer rare-earth clusters in fluorites, Phys. Rev. B: Condens. Matter Mater. Phys., 2005, vol. 72, no. 1, paper 014127. https://doi.org/10.1103/PhysRevB.72.014127

  17. Lyapin, A.A., Gushchin, S.V., Kuznetsov, S.V., Ryabochkina, P.A., Ermakov, A.S., Proydakova, V.Yu., Voronov, V.V., Fedorov, P.P., Artemov, S.A., Yapryntsev, A.D., and Ivanov, V.K., Infrared-to visible upconversion luminescence in SrF2:Er powders upon excitation of the 4I13/2 level, Opt. Mater. Express, 2018, vol. 8, no. 7, pp. 1863–1869. https://doi.org/10.1364/OME.8.001863

    Article  CAS  Google Scholar 

  18. Fedorov, P.P. and Osiko, V.V., Crystal growth of fluorides, Bulk Crystal Growth of Electronic, Optical and Optoelectronic Materials, Capper, P., Ed., Wiley Series in Materials for Electronic and Optoelectronic Applications, New York: Wiley, 2005, pp. 339–356. https://doi.org/10.1002/9780470012086.

  19. Bloembergen, N., Solid state infrared quantum counters, Phys. Rev. Lett., 1959, vol. 2, no. 3, pp. 84–85. https://doi.org/10.1103/PhysRevLett.2.84

    Article  CAS  Google Scholar 

  20. Ovsyankin, V.V. and Feofilov, P.P., On the mechanism of electron excitation summation in activated crystals, Pis’ma Zh. Eksp. Teor. Fiz., 1966, vol. 3, pp. 494–497.

    CAS  Google Scholar 

  21. Auzel, F., Comter guantique par transfer d’energie de Tm3+ dans un tungstate mixte et dans un verre germinate, C.R. Acad. Sci. Paris: B, 1966, vol. 263, pp. 819–821.

  22. Mujaji, M. and Comins, J.D., Laser-selective excitation spectra of Ho3+ ions in BaF2 crystals, J. Lumin., 1998, vol. 78, no. 2, pp. 167–172. https://doi.org/10.1016/S0022-2313(97)00279-2

    Article  CAS  Google Scholar 

  23. Popov, P.A. and Fedorov, P.P, Teploprovodnost’ ftoridnykh opticheskikh materialov (Thermal Conductivity of Optical Fluoride Materials), Bryansk: Gruppa Kompanii “Desyatochka,” 2012, p. 210.

  24. Richman, I., Longitudinal optical phonons in CaF2, SrF2, and BaF2, J. Chem. Phys., 1964, vol. 41, no. 9, pp. 2836–2837. https://doi.org/10.1063/1.1726360

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the Russian Federation President’s Grants Council, project no. MK-2168.2019.2.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Lyapin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lyapin, A.A., Ryabochkina, P.A., Ermakov, A.S. et al. Mechanisms of Upconversion Luminescence in BaF2–HoF3 Crystals under Excitation to the 5I5 Level of Ho3+ Ions. Inorg Mater 56, 1033–1038 (2020). https://doi.org/10.1134/S002016852010009X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S002016852010009X

Keywords:

Navigation