Skip to main content
Log in

Phase Formation, Structure, and Dielectric Properties of Modified Potassium Sodium Niobate Ceramics

  • Published:
Inorganic Materials Aims and scope

Abstract

We have prepared (1 – x)(K0.5Na0.5)NbO3xCa(Cu1/3Nb2/3)O3 (x = 0–0.1, ∆х = 0.02) ceramics by solid-state reactions and studied their phase formation, structure, and dielectric and ferroelectric properties. The formation of a phase with the perovskite structure and an orthorhombic unit cell has been demonstrated in all of the samples. Ferroelectric phase transitions have been confirmed by dielectric spectroscopy and laser second harmonic generation measurements. The temperatures of the phase transitions from the orthorhombic ferroelectric phase to the tetragonal ferroelectric phase and to the cubic (paraelectric) phase have been shown to decrease with increasing x. We have analyzed the composition dependences of dielectric parameters in the system studied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Gupta, V., Sharma, M., and Thakur, N., Optimization criteria for optimal placement of piezoelectric sensors and actuators on a smart structure: a technical review, J. Intel. Mater. Syst. Struct., 2010, vol. 21, pp. 1227–1243.

    Article  Google Scholar 

  2. Sodano, H.A., Henry, A., Inman, D.J., and Park, G., Comparison of piezoelectric energy harvesting devices for recharging batteries, J. Intel. Mater. Syst. Struct., 2005, vol. 16, pp. 799–807.

    Article  Google Scholar 

  3. Sodano, H.A., Park, G., and Inman, D.J., Estimation of electric charge output for piezoelectric energy harvesting, Strain, 2004, vol. 40, pp. 49–58.

    Article  Google Scholar 

  4. Venevtsev, Yu.N., Politova, E.D., and Ivanov, S.A., Segneto- i antisegnetoelektriki semeistva titanata bariya (Ferro- and Antiferroelectrics of the Barium Titanate Family), Moscow: Khimiya, 1985.

  5. Eitel, R.E., Randall, C.A., Shrout, T.R., and Park, S.-E., Preparation and characterization of high temperature perovskite ferroelectrics in the solid-solution (l – x)BiScO3xPbTiO3, Jpn. J. Appl. Phys., 2002, vol. 41, pp. 2099–2104.

    Article  CAS  Google Scholar 

  6. Eitel, R.E., Zhang, S.J., Shrout, T.R., Randall, C.A., and Levin, I., Phase diagram of the perovskite system of (l – x)BiScO3xPbTiO3, J. Appl. Phys., 2004, vol. 96, pp. 2828–2831.

    Article  CAS  Google Scholar 

  7. Zhang, Sh.J., Eitel, R.E., Randall, C.A., Shrout, T.R., and Alberta, E.F., Manganese-modified BiScO3–PbTiO3 piezoelectric ceramic for high-temperature shear mode sensor, Appl. Phys. Lett., 2005, vol. 86, paper 262904.

  8. Iniguez, J., Vandebilt, D., and Bellaiche, L., First-principles study of (l – x)BiScO3–xPbTiO3 piezoelectric alloys, Phys. Rev. B: Condens. Matter Mater. Phys., 2003, vol. 67, paper 224107.

  9. Maeder, M.D., Damjanovic, D., and Setter, N., Lead free piezoelectric materials, J. Electroceram., 2004, vol. 13, pp. 385–392.

    Article  CAS  Google Scholar 

  10. Saito, Y., Takao, H., Tani, I., Nonoyama, T., Takatori, K., Homma, T., Nagaya, T., and Nakamura, M., Lead-free piezoceramics, Nature, 2004, vol. 432, pp. 84–87.

    Article  CAS  Google Scholar 

  11. Takenaka, T., Nagata, H., Hiruma, Y., Yoshii, Y., and Matumoto, K., Lead-free piezoelectric ceramics based on perovskite structures, J. Electroceram., 2007, vol. 19, pp. 259–265.

    Article  CAS  Google Scholar 

  12. Takenaka, T., Nagata, H., and Hiruma, Y., Current developments and prospective of lead-free piezoelectric ceramics, Jpn. J. Appl. Phys., 2008, vol. 47, pp. 3787–3801.

    Article  CAS  Google Scholar 

  13. Rödel, J., Jo, W., Seifert, T.P., Anton, E.-M., Granzow, T., and Damjanovic, D., Perspective of the development of lead-free piezoceramics, J. Am. Ceram. Soc., 2009, vol. 92, pp. 1153–1177.

    Article  Google Scholar 

  14. Panda, P.K., Review: environmental friendly lead-free piezoelectric materials, J. Mater. Sci., 2009, vol. 44, pp. 5049–5062.

    Article  CAS  Google Scholar 

  15. Zhen, Y.H. and Li, J.F., Normal sintering of (K,Na)NbO3-based ceramics: influence of sintering temperature on densification, microstructure, and electrical properties, J. Am. Ceram. Soc., 2006, vol. 89, pp. 3669–3675.

    Article  CAS  Google Scholar 

  16. Bernard, J., Bencan, A., Rojac, T., Holc, J., Malic, B., and Kosec, M., Low temperature sintering of (K0.5Na0.5)NbO3 ceramics, J. Am. Ceram. Soc., 2008, vol. 91, pp. 2409–2411.

    Article  CAS  Google Scholar 

  17. Guo, Y., Kakimoto, K.-I., and Ohsato, H., Phase transitional behavior and piezoelectric properties of (Na0.5K0.5)NbO3–LiNbO3 ceramics, Appl. Phys. Lett., 2004, vol. 85, pp. 4121–4123.

    Article  CAS  Google Scholar 

  18. Ming, B.Q., Wang, J.F., Qi, P., and Zang, G.Z., Piezoelectric properties of (Li, Sb, Ta) modified (Na,K)NbO3 lead-free ceramics, J. Appl. Phys., 2007, vol. 101, paper 054103.

  19. Wang, K. and Li, J.F., Domain engineering of lead-free Li-modified (K,Na)NbO3 polycrystals with highly enhanced piezoelectricity, Adv. Funct. Mater., 2010, vol. 20, pp. 1924–1929.

    Article  CAS  Google Scholar 

  20. Singh, K.C., Jiten, C., Laishram, R., Thakur, O.P., and Bhattachary, D.K., Structure and electrical properties of Li- and Ta-substituted K0.5Na0.5NbO3 lead-free piezoelectric ceramics prepared from nanopowders, J. Alloys. Compd., 2010, vol. 496, pp. 717–722.

    Article  CAS  Google Scholar 

  21. Zhao, P., Zhang, B.P., and Li, J.F., Influences of sintering temperature on piezoelectric, dielectric and ferroelectric properties of Li/Ta-codoped lead-free (Na,K)NbO3, J. Am. Ceram. Soc., 2008, vol. 91, pp. 1690–1692.

    Article  CAS  Google Scholar 

  22. Jiang, X.P., Yang, Q., Yu, Z.D., Hu, F., Chen, C., Tu, N., and Li, Y.M., Microstructure and electrical properties of Li0.5Bi0.5TiO3-modified (Na0.5K0.5)NbO3 lead-free piezoelectric ceramics, J. Alloys Compd., 2010, vol. 493, pp. 276–280.

    Article  CAS  Google Scholar 

  23. Lin, D., Kwok, K.W., and Chan, H.L.W., Dielectric and piezoelectric properties of K0.5Na0.5NbO3–AgSbO3 lead-free ceramics, J. Appl. Phys., 2009, vol. 106, paper 034102.

  24. Yoon, M.S., Khansur, N.H., Lee, W.J., Geun, L.Y., and Ur, S.C., Effects of AgSbO3 on the piezoelectric/dielectric properties and phase transition of Li2O doped NKN lead-free piezoelectric ceramics, J. Adv. Mater. Res., 2011, vols. 287–290, pp. 801–804.

    Article  Google Scholar 

  25. Sun, X., Chen, J., Yu, R., Sun, C., Liu, G., Xing, X., and Qiao, L., BiScO3 doped (Na0.5K0.5)NbO3 lead-free piezoelectric ceramics, J. Am. Ceram. Soc., 2009, vol. 92, pp. 130–132.

    Article  CAS  Google Scholar 

  26. Sun, X., Deng, J., Sun, C., Li, J., Chen, J., Yu, R., Liu, G., Xing, X., and Qiao, L., Effect of BiScO3 and LiNbO3 on the piezoelectric properties of (K0.5Na0.5)NbO3 ceramics, J. Am. Ceram. Soc., 2009, vol. 92, no. 8, pp. 1853–1855.

    Article  CAS  Google Scholar 

  27. Hao, J., Xu, Z., Chua, R., Zhanga, Y., Li, G., and Yin, Q., Effects of MnO2 on phase structure, microstructure and electrical properties of (K0.5Na0.5)0.94Li0.06NbO3 lead-free ceramics, Mater. Chem. Phys., 2009, vol. 118, no. 1, pp. 229–233.

    Article  CAS  Google Scholar 

  28. Politova, E.D., Golubko, N.V., Kaleva, G.M., Mosunov, A.V., Sadovskaya, N.V., Stefanovich, S.Yu., Kiselev, D.A., Kislyuk, A.M., and Panda, P.K., Processing and characterization of lead-free ceramics on the base of sodium–potassium niobate, J. Adv. Dielectr., 2018, vol. 8, no. 1, paper 1850004.

  29. Politova, E.D., Golubko, N.V., Kaleva, G.M., Mosunov, A.V., Sadovskaya, N.V., Stefanovich, S.Yu., Kiselev, D.A., Kislyuk, A.M., Chichkov, M.V., and Panda, P.K., Structure, ferroelectric and piezoelectric properties of KNN-based perovskite ceramics, Ferroelectrics, 2019, vol. 538, pp. 45–51.

    Article  CAS  Google Scholar 

  30. Kim, J.-W., Ryu, J., Hahn, B.-D., Choi, J.-J., Yoon, W.-H., Ahn, C.-W., Choi, J.-H., and Park, D.-S., Physical properties of A(Cu1/3Nb2/3)O3 (A = Ba, Sr, Ca)-substituted BaTiO3 system grown by using aerosol deposition, J. Kor. Phys. Soc., 2013, vol. 63, no. 12, pp. 2296–2300.

    Article  CAS  Google Scholar 

  31. Ryu, J. and Jeong, D.-Y., Piezoelectric and strain properties of lead-free (Bi1/2Na1/2)TiO3–Ba(Cu1/3Nb2/3)O3 ceramics, Kor. J. Mater. Res., 2011, vol. 21, no. 11, pp. 628–633.

    Article  CAS  Google Scholar 

  32. Kaleva, G.M., Politova, E.D., Mosunov, A.V., Sadovskaya, N.V., Segalla, A.H., and Zeng, J., Effect of low-melting additives on the structure, phase transitions, and dielectric properties of 0.36BiScO3–0.64PbTiO3 ceramics, Inorg. Mater., 2012, vol. 48, no. 9, pp. 953–959.

    Article  CAS  Google Scholar 

  33. Politova, E.D., Kaleva, G.M., Mosunov, A.V., Sadovskaya, N.V., and Segalla, A.H., Influence of complex additives on structure, microstructure, phase transitions and dielectric properties of BiScO3–PbTiO3 ceramics, Ferroelectrics, 2013, vol. 449, pp. 415–418.

    Article  Google Scholar 

  34. Kaleva, G.M., Mosunov, A.V., and Politova, E.D., Phase formation and dielectric properties of lithium fluoride-doped (Na0.5Bi0.5)TiO3–(K0.5Na0.5)NbO3–BiFeO3 ceramics, Inorg. Mater., 2016, vol. 52, no. 8, pp. 836–841.

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the Russian Foundation for Basic Research (project no. 18-03-00372) and the Russian Federation Ministry of Science and Higher Education (state research target for the Semenov Federal Research Center for Chemical Physics, theme no. 45.22: Fundamental Principles behind the Development of a New Generation of Nanostructured Systems with Unique Electrical and Magnetic Performance Parameters, state registration no. AAAA-A18-118012390045-2).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. M. Kaleva.

Additional information

Translated by O. Tsarev

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaleva, G.M., Politova, E.D., Mosunov, A.V. et al. Phase Formation, Structure, and Dielectric Properties of Modified Potassium Sodium Niobate Ceramics. Inorg Mater 56, 1072–1078 (2020). https://doi.org/10.1134/S0020168520100076

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0020168520100076

Keywords:

Navigation