Skip to main content
Log in

Heat Capacity of Pb10 –xPrx(GeO4)2 +x(VO4)4– x (x = 0, 1, 2, 3) Apatites in the Range 350–1050 K

  • Published:
Inorganic Materials Aims and scope

Abstract

Pb10 – xPrx(GeO4)2 + x(VO4)4 – x (x = 0, 1, 2, 3) apatites have been prepared by solid-state reactions via sequential firing of appropriate oxide mixtures (PbO, Pr2O3, GeO2, and V2O5) in air in the temperature range 773–1073 K. Their unit-cell parameters have been determined as functions of temperature by high-temperature X-ray diffraction measurements, and the linear and volume expansion coefficients of Pb7Pr3(GeO4)5(VO4) have been calculated. The heat capacity of the synthesized Pb10 – xPrx(GeO4)2 + x(VO4)4 – x (x = 0, 1, 2, 3) compounds with the apatite structure has been determined by differential scanning calorimetry in the temperature range 350–1050 K. The cp(T) curves of the samples with x = 1, 2, and 3 have been shown to have extrema (in particular, peaks at 701, 917, and 1018 K for the x = 3 sample) due to phase transitions. The experimental Cp(T) heat capacity data have been used to evaluate the thermodynamic functions of the synthesized apatites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Kanazawa, T., Inorganic Phosphate Materials, Materials Science Monographs, vol. 52, Amsterdam: Elsevier, 1989.

  2. Zhuravlev, V.D and Velikodny, Yu.A., Lead lanthanum and strontium lanthanum germanovanadates with apatite and oxyapatite structures, Russ. J. Inorg. Chem., 2009, vol. 54, no. 10, pp. 1551–1552. https://doi.org/10.1134/S0036023609100088

    Article  Google Scholar 

  3. Chernorukov, N.G., Knyazev, A.V., and Bulanov, E.N., Phase transitions and thermal expansion of apatite-structured compounds, Inorg. Mater., 2011, vol. 47, no. 2, pp. 172–177. https://doi.org/10.1134/S002016851101002X

    Article  CAS  Google Scholar 

  4. Karzhavin, V.K., Termodinamicheskie velichiny khimicheskikh elementov i soedinenii. Primery ikh prakticheskogo primeneniya (Thermodynamic Parameters of Chemical Elements and Compounds, with Examples of Practical Application), Apatity: Kol’skii Nauchnyi Tsentr Ross. Akad. Nauk, 2011.

  5. Grossin, D., Rollin-Martinet, S., Estournis, C., et al., Biomimetric apatite sintered at very low temperature by spark plasma sintering: physic-chemistry and microstructure aspects, Acta Biomater., 2010, vol. 6, no. 2, pp. 577–585.

    Article  CAS  Google Scholar 

  6. Chakroun-Ouadhour, E., Ternane, R., Ben Hassen-Chehimi, D., et al., Synthesis, characterization and electrical properties of a lead sodium vanadate apatite, Mater. Res. Bull., 2008, vol. 43, pp. 2451–2456. https://doi.org/10.1016/j.materresbull.2007.07.030

    Article  CAS  Google Scholar 

  7. Zhang, J., Liang, H., Yu, R., et al., Luminescence of Ce3+-activated chalcogenide apatites Ca10(PO4)6Y (Y = S, Se), Mater. Chem. Phys., 2009, vol. 114, no. 1, pp. 242–246.

    Article  CAS  Google Scholar 

  8. Ignatov, A.V., Savankova, T.M., Didorenko, E.G., et al., Isomorphous substitutions in the Pb(8– x)GdxNa2-(VO4)6O(x/2) system, Vestn. Donetsk. Nats. Univ., Ser. A: Estestv. Nauki, 2014, no. 1, pp. 152–154.

  9. Savankova, T.M., Akselrud, L.G., Ardanova, L.I., et al., Synthesis, crystal structure refinement, and electrical conductivity of Pb(8– x)Na2Smx(VO4)6O(x/2), J. Chem., 2014, pp. 1–7. https://doi.org/10.1155/2014/263548

  10. Pasero, M., Kampf, A.R., Ferraris, C., et al., Nomenclature of the apatite supergroup minerals, Eur. J. Mineral., 2010, vol. 22, pp. 163–179. https://doi.org/10.1127/0935-1221/2010/0022-2022

    Article  CAS  Google Scholar 

  11. Denisova, L.T., Kargin, Yu.F., Golubeva, E.O., et al., Heat capacity of Pb10 –xLax(GeO4)2 +x(VO4)4 –x (x = 0, 1, 2, 3) apatites in the range 320–1000 K, Inorg. Mater., 2019, vol. 55, no. 2, pp. 162–166. https://doi.org/10.1134/S0002337X19020027

    Article  CAS  Google Scholar 

  12. Denisova, L.T., Kargin, Yu.F., Belousova, N.V., et al., Synthesis and high-temperature heat capacity of Pb8La2(GeO4)4(VO4)2 and Pb8Nd2(GeO4)4(VO4)2 with the apatite structure, Inorg. Mater., 2018, vol. 54, no. 2, pp. 163–166. https://doi.org/10.1134/S0020168518020036

    Article  CAS  Google Scholar 

  13. Denisova, L.T., Kargin, Yu.F., Chumilina, L.G., et al., Synthesis of Pr2CuO4 and Its Heat Capacity in the Range 364–1064 K, Inorg. Mater., 2014, vol. 50, no. 12, pp. 1226–1229. https://doi.org/10.1134/S002016851412005X

    Article  CAS  Google Scholar 

  14. Solovyov, L.A., Full-profile refinement by derivative difference minimization, J. Appl. Crystallogr., 2004, vol. 37, pp. 743–749. https://doi.org/10.1107/S0021889804015638

    Article  CAS  Google Scholar 

  15. Denisov, V.M., Denisova, L.T., Irtyugo, L.A., and Biront, V.S., Thermal physical properties of Bi4Ge3O12 single crystals, Phys. Solid State, 2010, vol. 52, no. 7, pp. 1362–1365. https://doi.org/10.1134/S1063783410070073

    Article  CAS  Google Scholar 

  16. Yano, T., Nabeta, Y., and Watanabe, A., A new crystal Pb5(GeO4)(VO4)2 for acousto-optic device applications, Appl. Phys. Lett., 1971, vol. 18, no. 12, pp. 570–571. https://doi.org/10.1063/1.1653544

    Article  CAS  Google Scholar 

  17. Ivanov, S.A. and Zavodnik, V.E., Crystal structure of Pb5GeV2O12, Kristallografiya, 1989, vol. 34, no. 4, pp. 824–828.

    CAS  Google Scholar 

  18. Ivanov, A., Crystal structure refinement of Pb5(GeO4)(VO4)2 using X-ray powder diffraction peak profiles, Zh. Strukt. Khim., 1990, vol. 31, no. 4, pp. 80–84.

    CAS  Google Scholar 

  19. Yablochkova, N.V., Synthesis of Pb8Pr2(GeO4)4(VO4)2 and refinement of its crystal structure, Russ. J. Inorg. Chem., 2013, vol. 58, no. 7, pp. 769–772. https://doi.org/10.1134/S0036023613070255

    Article  CAS  Google Scholar 

  20. Get’man, E.I., Yablochkova, N.V., Loboda, S.N., et al., Isomorphous substitution of europium for strontium in the structure of synthetic hydroxovanadate, J. Solid State Chem., 2008, vol. 181, pp. 2386–2392. https://doi.org/10.1016/j.jssc.2008.06.003

    Article  CAS  Google Scholar 

  21. Shaskol’skaya, M.P., Kristallografiya (Crystallography), Moscow: Vysshaya Shkola, 1984.

    Google Scholar 

  22. Hamdi, B., Feki, H.El., Salah, A.B., et al., Ionic conductivity and phase transition in Pb4.8Bi1.6Na3.6(PO4)6, a apatite-type compound, Solid State Ionics, 2006, vol. 177, nos. 17–18, pp. 1413–1420. https://doi.org/10.1016/j.ssi.2006.06.031

    Article  CAS  Google Scholar 

  23. Zhang, F.X., Lang, M., Zhang, J.M., et al., Phase transition and abnormal compressibility of lanthanide silicate with the apatite structure, Phys. Rev. B: Condens. Matter Mater. Phys., 2012, vol. 85, paper 214116. https://doi.org/10.1103/PhysRevB.85.214116

  24. Azimov, Sh.Yu., Ismatov, A.A., and Fedorov, N.F., Apatity i ikh redkozemel’nye analogi (Apatites and Their Rare-Earth Analogs), Tashkent: FAN, 1990.

  25. Novikova, S.I., Teplovoe rasshirenie tverdykh tel (Thermal Expansion of Solids), Moscow: Nauka, 1974.

  26. Filatov, S.K., Vysokotemperaturnaya kristallokhimiya (High-Temperature Crystal Chemistry), Leningrad: Nedra, 1990.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. T. Denisova.

Additional information

Translated by O. Tsarev

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Denisova, L.T., Kargin, Y.F., Golubeva, E.O. et al. Heat Capacity of Pb10 –xPrx(GeO4)2 +x(VO4)4– x (x = 0, 1, 2, 3) Apatites in the Range 350–1050 K. Inorg Mater 56, 1027–1032 (2020). https://doi.org/10.1134/S0020168520100039

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0020168520100039

Keywords:

Navigation