Skip to main content
Log in

Thermophysical Properties of Single Crystals of CaF2–SrF2–RF3 (R = Ho, Pr) Fluorite Solid Solutions

  • Published:
Inorganic Materials Aims and scope

Abstract

Single crystals of Ca1 – ySryRхF2 + х (R = Ho, Pr) solid solutions with high optical quality have been grown by the Bridgman technique in vacuum using a fluorination atmosphere. The thermal conductivity of the Ca0.60Sr0.40 – хHoхF2 + х solid solutions decreases from 3.27 to 2.37 W/(m K) as the fraction of holmium rises from 0 to 3 mol %, respectively. The room-temperature thermal conductivity of the Ca0.50Sr0.50 – хPrхF2 + х solid solutions decreases from 3.38 to 2.18 W/(m K) as the fraction of praseodymium rises from 0 to 8 mol %, respectively. Increasing the holmium and praseodymium content of the ternary solid solutions leads to a gradual increase in their refractive index. With increasing wavelength, the refractive index gradually decreases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. Kaminskii, A.A., Laser Crystals. Their Physics and Properties, Berlin: Springer, 1990.

    Book  Google Scholar 

  2. Hughes-Currie, R.B. Salked, A.J., et al., Excitons and interconfigurational transitions in CaF2:Yb2+ crystals, J. Lumin., 2015, vol. 158, pp. 197–202.

    Article  CAS  Google Scholar 

  3. Mahlik, S., Lazarowska, A., Grinberg, M., Wells, J-P.R., and Reid, M.F., Pressure dependence of the emission in CaF2:Yb2+, J. Phys. Condens. Matter, 2015, vol. 27, paper 305501.

  4. Lucca, A., Debourg, G., Jacquement, M., Druon, F., Balembois, F., and Georges, P., High-power diode-pumped Yb3+:CaF2 femtosecond laser, Opt. Lett., 2004, vol. 29, pp. 2767–2769.

    Article  CAS  Google Scholar 

  5. Siebold, M., Bock, S., Schramm, U., et al., Yb:CaF2 – a New Old Laser Crystal, Appl. Phys. B, 2009, vol. 97, pp. 327–338.

    Article  CAS  Google Scholar 

  6. Aballea, P., Suganuma, A., Druon, F., et al., Laser performance of diode-pumped Yb:CaF2 optical ceramics synthesized using an energy-efficient process, Optica, 2015, vol. 2, pp. 288–291.

    Article  CAS  Google Scholar 

  7. Kessler, A., Hornung, M., Keppler, S., et al., 16.6 J chirped femtosecond laser pulses from a diode-pumped Yb:CaF2 amplifier, Opt. Lett., 2014, vol. 39, pp. 1333–1336.

    Article  CAS  Google Scholar 

  8. Machinet, G., Andriukaitis, G., Sevillano, P., et al., High-gain amplification in Yb:CaF2 crystals pumped by a high-brightness Yb-doped 976 nm fiber laser, Appl. Phys. B, 2013, vol. 111, pp. 495–500.

    Article  CAS  Google Scholar 

  9. Ito, M., Goutaudier, C., Guyot, Y., et al., Crystal growth, Yb3+ spectroscopy, concentration quenching analysis and potentiality of laser emission in Ca1 –xYbxF2 +x, J. Phys.: Condens. Matter, 2004, vol. 16, pp. 1501–1521.

    CAS  Google Scholar 

  10. Apollonov, V.V., High power disk laser: advantages and prospects, Am. J. Mod. Phys., 2012, vol. 1, pp. 1–6.

    Article  CAS  Google Scholar 

  11. Ricaud, S., Papadopoulos, D.N., Pellegrina, A., et al., High-power diode-pumped cryogenically cooled Yb:CaF2 laser with extremely low quantum defects, Opt. Lett., 2011, vol. 36, pp. 1602–1604.

    Article  CAS  Google Scholar 

  12. Fedorov, P.P., Kuznetsov, S.V., and Osiko, V.V., Elaboration of nanofluorides and ceramics for optical and laser applications, Photonic & Electronic Properties of Fluoride Materials, Tressaud, A. and Poeppelmeier, K., Eds., Elsevier, 2016, pp. 7–31.

    Google Scholar 

  13. Fedorov, P.P. and Osiko, V.V., Crystal growth of fluorides, Bulk Crystal Growth of Electronic, Optical and Optoelectronic Materials, Capper, P., Ed., Wiley Series in Materials for Electronic and Optoelectronic Applications, New York: Wiley, 2005, pp. 339–356.

  14. Albach, D., Loeser, M., Siebold, M., and Schramm, U., Performance demonstration of the PENELOPE main amplifier HEPA I using broadband nanosecond pulses, High Power Laser Sci. Eng., 2019, vol. 7, e1.

    Article  CAS  Google Scholar 

  15. Fedorov, P.P., Compositions of congruently melting three-component solid solutions determined by finding acnodes on ternary system fusion surfaces, Growth of Crystals, Givargizov, E.I., and Melnicova, A.M., Eds., New York: Consultants Bureau, 1996, vol. 20, pp. 103–116.

    Google Scholar 

  16. Fedorov, P.P. and Buchinskaya, I.I., Spatial inhomogeneity in crystalline materials and saddle-type congruent melting points in ternary system, Russ. Chem. Rev., 2012, vol. 81, no. 1, pp. 1–20. https://doi.org/10.1070/RC2012v081n01ABEH004207

    Article  CAS  Google Scholar 

  17. Basiev, T.T., Vasil’ev, S.V., Doroshenko, M.E., Konyushkin, V.A., Kuznetsov, S.V., Osiko, V.V., and Fedorov, P.P., Efficient lasing in diode-pumping Yb3+:CaF2–SrF2 solid solution single crystals, Quantum Electron., 2007, vol. 37, no. 10, pp. 934–937. https://doi.org/10.1070/QE2007v037n10ABEH013662

    Article  CAS  Google Scholar 

  18. Basiev, T.T., Doroshenko, M.E., Fedorov, P.P., Konyushkin, V.A., Kuznetsov, S.V., Osiko, V.V., and Akchurin, M.Sh. Efficient laser based on CaF2–SrF2–YbF3 nanoceramics, Opt. Lett., 2008, V, 33, . 521–523. https://doi.org/10.1364/OL.33.000521

  19. Basiev, T.T., Konyushkin, V.A., Konyushkin, D.V., Doroshenko, M.E., Huber, G., Reichert, F., Hansen, N.-O., and Fechner, M., First ceramic laser in the visible spectral range, Opt. Mater. Express, 2011, vol. 1, pp. 1511–1514.

    Article  CAS  Google Scholar 

  20. Morozov, O., Kuznetsov, S., Konyushkin, V., Nakladov, A., Nizamitdinov, A., Fedorov, P., and Semashko, V., Prospective visible laser active media based on disordered fluorite-type structure crystals, Eur. Phys. J. Conf. (IWQO-2019), 2019, vol. 220, paper 03024. https://doi.org/10.1051/epjconf/201922003024

  21. Šulc, J., Němec, M., Jelínková, H., Doroshenko, M., Fedorov, P.P., and Osiko, V.V., Diode pumped tunable lasers based on Tm:CaF2 and Tm:Ho:CaF2 ceramics, Proc. SPIE, 2014, vol. 8959, paper 895925. https://doi.org/10.1117/12.2040763

  22. Nemec, M., Šulc, J., Jelinek, M., Kubecek, V., Jelinkova, H., Doroshenko, M.E., Alimov, O.K., Konyushkin, V.A., Nakladov, A.N., and Osiko, V.V., Thulium fiber pumped tunable Ho:CaF2 laser, Opt. Lett., 2017, vol. 42, pp. 1852–1855. https://doi.org/10.1364/OL.42.001852

    Article  CAS  PubMed  Google Scholar 

  23. Lyapin, A.A., Ryabochkina, P.A., Chabushkin, A.N., Ushakov, S.N., and Fedorov, P.P., Investigation of the mechanisms of upconversion luminescence in Ho3+ doped CaF2 crystals and ceramics upon excitation of 5I7 level, J. Lumin., 2015, vol. 167, pp. 120–125.

    Article  Google Scholar 

  24. Fedorov, P.P., Luginina, A.A., Kuznetsov, S.V., Voronov, V.V., Lyapin, A.A., Ermakov, A.S., Pominova, D.V., Yapryntsev, A.D., Ivanov, V.K., Pynenkov, A.A., and Nishchev, K.N., Composite up-conversion luminescent films containing a nanocellulose and SrF2:Ho particles, Cellulose, 2019, vol. 26, pp. 2403–2423. https://doi.org/10.1007/s10570-018-2194-4

    Article  CAS  Google Scholar 

  25. Fedorov, P.P., Ushakov, S.N., Uslamina, M.A., Chernova, E.V., Kuznetsov, S.V., Voronov, V.V., Duvel, A., Heitjans, P., Pynenkov, A.A., Nishchev, K.N., and Osiko, V.V., Morphological stability of the solid‒liquid interface during melt crystallization of Ca1 –xSrxF2 solid solution, Crystallogr. Rep., 2018, vol. 63, no. 5, pp. 837–843.

    Article  CAS  Google Scholar 

  26. Popov, P.A. and Fedorov, P.P., Teploprovodnost’ ftoridnykh opticheskikh materialov (Thermal Conductivity of Optical Fluoride Materials), Bryansk: Gruppa Kompanii Desyatochka, 2012.

  27. Popov, P.A., Sorokin, N.I., and Fedorov, P.P., Thermal conductivity and expansion of PbF2 single crystals, Ionics, 2017, vol. 23, no. 1, pp. 233–239. https://doi.org/10.1007/s11581-016-1802-2

    Article  CAS  Google Scholar 

  28. Konstantinova, A.F., Krivandina, E.A., Karimov, D.N., and Sobolev, B.P., Calculation of the refractive indices of M1 –x RxF2+x crystals (M = Ca, Sr, Ba, Cd, Pb; R - are rare earth elements), Crystallogr. Rep., 2010, vol. 55, no. 6, pp. 990–994.

    Article  CAS  Google Scholar 

  29. Karimov, D.N., Komar’kova, O.N., Sorokin, N.I., Bezhanov, V.A., Chernov, S.P., Popov, P.A., and Sobolev, B.P., Growth of congruently melting Ca0.59Sr0.41F2 crystals and study of their properties, Crystallogr. Rep., 2010, vol. 55, no. 3, pp. 518–524.

    Article  CAS  Google Scholar 

  30. Popov, P.A., Moiseev, N.V., Karimov, D.N., Sorokin, N.I., Sul’yanova, E.A., Sobolev, B.P., Konyushkin, V.A., and Fedorov, P.P., Thermophysical characteristics of Ca1 –xSrxF2 solid-solution crystals (0 ≤ x ≤ 1), Crystallogr. Rep., 2015, vol. 60, pp. 133–139. https://doi.org/10.1134/S1063774515010186

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the Presidium of the Russian Academy of Sciences, program no. 5: Photonic Technologies in Probing Inhomogeneous Media and Biological Systems.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. P. Fedorov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kuznetsov, S.V., Konyushkin, V.A., Nakladov, A.N. et al. Thermophysical Properties of Single Crystals of CaF2–SrF2–RF3 (R = Ho, Pr) Fluorite Solid Solutions. Inorg Mater 56, 975–981 (2020). https://doi.org/10.1134/S0020168520090113

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0020168520090113

Keywords:

Navigation