Skip to main content
Log in

Synthesis, Structure, and Thermophysical Properties of EuGaGe2O7

  • Published:
Inorganic Materials Aims and scope

Abstract

The europium gallium germanate EuGaGe2O7 has been prepared by solid-state reaction in air in the temperature range 1273–1473 K using a stoichiometric mixture of Eu2O3, Ga2O3, and GeO2. Its crystal structure has been determined by X-ray diffraction (sp. gr. P21/c, a = 7.1693(7) Å, b = 6.57008(6) Å, c = 12.7699(1) Å, β = 117.4522(5)°, V = 533.768(8) Å3). The heat capacity of polycrystalline samples has been determined by differential scanning calorimetry in the temperature range 350–1053 K and the experimental data have been used to calculate the thermodynamic properties (enthalpy increment, entropy change, and reduced Gibbs energy change) of EuGaGe2O7.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. Jarchow, O., Klaska, K.-H., and Schenk, H., REAlGe2O7 – new compounds of rare earth germinates, Naturwissenschaften, 1981, vol. 68, pp. 475–476.

    Article  CAS  Google Scholar 

  2. Kaminskii, A.A., Mill, B.V., Butashin, A.V., et al., Germanates with NdAlGe2O7-type structure. Synthesis, crystal structure, absorption–luminescence properties, and stimulated emission of their activator, Nd3+ ions, Phys. Status Solidi A, 1987, vol. 103, pp. 575–592.

    Article  CAS  Google Scholar 

  3. Cascales, C., Puebla, G., Klimin, S., et al., Magnetic ordering in the rare earth iron germanates HoFeGe2O7 and ErFeGe2O7, Chem. Mater., 1999, vol. 11, pp. 2520–2526.

    Article  CAS  Google Scholar 

  4. Lozano, G., Cascales, C., Zaldo, C., and Porcher, P., Measurement and simulation of the energy levels of R = Pr3+ and Nd3+ in GaRGe2O7, J. Alloys Compd., 2000, vols. 303–304, pp. 349–354.

    Article  Google Scholar 

  5. Kaminakii, A.A., Rhee, H., Lux, O., et al., Monoclinic LaGaGe2O7:Nd3+ – a novel SRS- and SE-active crystal with high-order Stokes and anti-Stokes picosecond χ(3)-nonlinear lasing, Laser Phys. Lett., 2013, vol. 10, paper 075 803.https://doi.org/10.1088/1612-2011/10/7/075803

  6. Jarchow, O., Klaska, K.-H., and Schenk-Strauß, H., Die Kristallstrukturen von NdAlGe2O7 und NdGaGe2O7, Z. Kristallogr., 1985, vol. 172, pp. 159–166.

    Article  CAS  Google Scholar 

  7. Cascales, C., Fernȧndez-Diaz, M.T., Monge, M.A., and Bucio, L., Crystal structure and low-temperature magnetic ordering in rare earth iron germanates RFeGe2O7, R = Y, Pr, Dy, Tm, and Yb, Chem. Mater., 2002, vol. 14, pp. 1995–2003.https://doi.org/10.1021/cm0111332

    Article  CAS  Google Scholar 

  8. Buciot, L., Cascales, C., Alonso, J.A., and Rasines, I., Neutron diffraction refinement characterization of FeRGe2O7 (R = La, Pr, Nd, Gd), J. Phys.: Condens. Matter, 1996, vol. 8, pp. 2641–2653.

    Google Scholar 

  9. Juarez-Arellano, E.A., Campa-Molina, J., Ulloa-Godinez, S., et al., Crystallochemistry of thortveitite-like and thortveitite-type compounds, Mater. Res. Soc. Symp., 2005, vol. 848, pp. FF6.15.1–FF6.15.8.

  10. Denisova, L.T., Kargin, Yu.F., Irtyugo, L.A., et al., Heat capacity of In2Ge2O7 and YInGe2O7 from 320 to 1000 K, Inorg. Mater., 2018, vol. 54, no. 12, pp. 1245–1249.https://doi.org/10.1134/S0020168518120026

    Article  CAS  Google Scholar 

  11. Denisova, L.T., Irtyugo, L.A., Belousova, N.V., et al., High temperature heat capacity and thermodynamic properties of Tm2Ge2O7 and TmInGe2O7 in the region of 350–1000 K, Russ. J. Phys. Chem. A, 2019, vol. 93, no. 3, pp. 598–601.https://doi.org/10.1134/S003602441903004X

    Article  CAS  Google Scholar 

  12. Becker, U.W. and Felsche, J., Phases and structural relations of the earth germanates RE2Ge2O7, RE = La–Lu, J. Less-Common Met., 1987, vol. 128, pp. 269–280.

    Article  CAS  Google Scholar 

  13. Denisova, L.T., Irtyugo, L.A., Kargin, Yu.F., et al., High-temperature heat capacity and thermodynamic properties of Tb2Sn2O7, Inorg. Mater., 2017, vol. 53, no. 1, pp. 93–95.https://doi.org/10.1134/S0020168517010046

    Article  CAS  Google Scholar 

  14. Bruker AXS TOPAS V4: General Profile and Structure Analysis Software for Powder Diffraction Data. User’s Manual, Karlsruhe: Bruker AXS, 2008.

  15. Maier, C.G. and Kelley, K.K., An equation for the representation of high temperature heat content data, J. Am. Chem. Soc., 1932, vol. 54, no. 8, pp. 3243–3246.

    Article  CAS  Google Scholar 

  16. Denisova, L.T., Irtyugo, L.A., Kargin, Yu.F., et al., Synthesis and High-Temperature Heat Capacity of Sm2Ge2O7 and Eu2Ge2O7, Inorg. Mater., 2018, vol. 54, no. 2, pp. 167–170.https://doi.org/10.1134/S0020168518020048

    Article  CAS  Google Scholar 

  17. Leitner, J., Chuchvalec, P., Sedmidubský, D., et al., Estimation of heat capacities of solid mixed oxides, Thermochim. Acta, 2003, vol. 395, nos. 1–2, pp. 27–46.

    Article  CAS  Google Scholar 

  18. Kumok, V.N., Problem of matching techniques for evaluating thermodynamic characteristics, in Pryamye i obratnye zadachi khimicheskoi termodinamiki (Direct and Inverse Problems in Chemical Thermodynamics), Novosibirsk: Nauka, 1987, pp. 108–123.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. T. Denisova.

Additional information

Translated by O. Tsarev

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Denisova, L.T., Molokeev, M.S., Irtyugo, L.A. et al. Synthesis, Structure, and Thermophysical Properties of EuGaGe2O7 . Inorg Mater 56, 854–858 (2020). https://doi.org/10.1134/S002016852008004X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S002016852008004X

Keywords:

Navigation