Skip to main content
Log in

Optical Spectroscopy of Disordered Langasites Doped with Transition Metal Ions

  • Published:
Inorganic Materials Aims and scope

Abstract

In this review, we present analysis of absorption and circular dichroism spectra of disordered langasite crystals with the calcium gallium germanate structure, whose structures have no screw axis. We consider results of original research concerned with spectroscopic characteristics of undoped and transition metal-doped langasite crystals. Structural disordering on a site leads to charge disbalance on this site and defect formation. Electron transitions to “defect” states contribute to both absorption and circular dichroism spectra. In this situation, a transition metal ion can be incorporated into a “defect” site in different oxidation states, depending on the type of position and the impurity ion. It has been shown that electric dipole forbidden but magnetic dipole allowed electron transitions of impurity ions of d-block elements have the highest intensity in the circular dichroism spectra of doped crystals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.
Fig. 15.
Fig. 16.
Fig. 17.
Fig. 18.
Fig. 19.

Similar content being viewed by others

REFERENCES

  1. Kizel, V.A. and Burkov, V.I., Girotropiya kristallov (Gyrotropy of Crystals), Moscow: Nauka, 1980.

  2. Mill, B.V. and Pisarevsky, Yu.V., Langasite-type materials: from discovery to present state, Proc. IEEE/EIA Int. Frequency Control Symp. and Exhibition, Kansas City, 2000, pp. 133–144.https://doi.org/10.1109/FREQ.2000.887343

  3. Kaminskii, A.A., Mill’, B.V., and Sarkisov, S.E., Fizika i spektroskopiya lazernykh kristallov (Physics and Spectroscopy of Laser Crystals), Kaminskii, A.A., Ed., Moscow: Nauka, 1986.

    Google Scholar 

  4. Silvestrova, I.M., Pisarevskii, Yu.V., Mill’, B.V., and Kaminskii, A.A., Acoustic and electromechanical properties of piezoelectric crystals with the structure of trigonal Ca-gallogermanate, Dokl. Akad. Nauk, 1985, vol. 282, no. 3, pp. 575–578.

    CAS  Google Scholar 

  5. Kaldybaev, K.A., Konstantinova, A.F., and Perekalina, Z.B., Girotropiya odnoosnykh pogloshchayushchikh kristallov (Gyrotropy of Uniaxial Absorbing Crystals), Moscow: Inst. Sotsial’no-Ekonomicheskikh i Proizvodstvenno-Ekologicheskikh Problem Investirovaniya, 2000.

  6. Burkov, V.I., Perederei, E.P., Fedotov, E.V., Mill’, B.V., and Pisarevskii, Yu.V., Circular dichroism spectra of langasite family crystals in the range of electronic transitions of structure defects, Crystallogr. Rep., 2008, vol. 53, no. 5, pp. 843–846. https://doi.org/10.1134/S1063774508050192

    Article  CAS  Google Scholar 

  7. Buzanov, O.A., Kozlova, N.S., Kozlova, A.P., Zabelina, E.V., Blagov, A.E., Eliovich, I.A., Kulikov, A.G., and Targonskiy, A.G., Crystal growth and optical properties of Ca3TaGa3Si2O14 single crystals, Jpn. J. Appl. Phys., 2018, vol. 57, paper UD08.https://doi.org/10.7567/JJAP.57.11UD08

  8. Lever, A.B.P., Inorganic Electronic Spectroscopy, Amsterdam: Elsevier, 1984, 2nd ed.

    Google Scholar 

  9. Macfarlane, P.I., Han, T.P.J., Henderson, B., and Kaminskii, A.A., Cr3+ luminescence in calcium and strontium gallogermanate, Opt. Mater., 1994, vol. 3, no. 1, pp. 15–24.https://doi.org/10.1016/0925-3467(94)90024-8

    Article  CAS  Google Scholar 

  10. Alyea, E.C., Basi, J.S., Bradley, D.C., and Chisholm, V.H., Covalent compounds of quadrivalent transition metals. Part II. Chromium(IV) tertiary alkoxides and triethylsilyloxide, J. Chem. Soc. A: Inorg. Phys. Theor., 1971, pp. 772–776.https://doi.org/10.1039/J19710000772

  11. Bochmann, M., Wilkinson, G., Young, G.B., Hursthouse, M.B., and Abdul Malik, K.M., Synthesis and properties of bis(t-butyl)methoxides of chromium(III,IV), manganese(II), iron(III), cobalt(II), and copper(I). The crystal and molecular structures of lithium tetrakis[bis(t-butyl)methoxo]chromate(III)-tetrahydrofuran(1/1), tetrakis[bis(t-butyl)methoxo]chromium(IV), and lithium tetrakis[bis(t-butyl)methoxo]ferrate(III)-bis(t-butyl)-methanol(1/1), J. Chem. Soc., Dalton Trans., 1980, vol. 10, pp. 1863–1871. https://doi.org/10.1039/DT9800001863

    Article  Google Scholar 

  12. Andrauskas, D.M. and Kennedy, C., Tetravalent chromium solid-state passive Q-switch for Nd:YAG laser systems, OSA Proc. Lasers, 1991, vol. 10, pp. 393–397.https://doi.org/10.1364/ASSL.1991.MT12

  13. Jia, W., Liu, H., Jaffe, S., Yen, W.M., and Denker, B., Spectroscopy of Cr3+ and Cr4+ ions in forsterite, Phys. Rev. B: Condens. Matter Mater. Phys., 1991, vol. 43, no. 7, pp. 5234–5242.https://doi.org/10.1103/PhysRevB.43.5234

    Article  CAS  Google Scholar 

  14. Miller, I.J., Alcock, A.J., and Bernard, J.E., Experimental investigation of Cr4+ in YAG as a passive Q‑switch, Advanced Solid State Lasers, Santa Fe, 1992, vol. 13, paper LM13.https://doi.org/10.1364/ASSL.1992.LM13

  15. Zverev, G.M. and Shestakov, A.V., Tunable near-infrared oxide crystal lasers, Advanced Solid State Lasers, Cape Cod, 1989, vol. 5, paper BB5. https://doi.org/10.1364/ASSL.1989.BB5

  16. Perekalina, Z.B., Veremeichik, T.F., Kaldybaev, K.A., and Tynaev, A.D., Spectroscopy studies of pure and chromium-doped calcium gallogermanate crystals, Ca3Ga2Ge4O14, Crystallogr. Rep., 2000, vol. 45, no. 2, pp. 304–306.https://doi.org/10.1134/1.171185

    Article  Google Scholar 

  17. Burkov, V.I., Konstantinova, A.F., Mill, B.V., et al., The absorption and circular dichroism spectra of langasite family crystals doped with chromium ions, Crystallogr. Rep., 2009, vol. 54, no. 4, pp. 652–657.https://doi.org/10.1134/S1063774509040129

    Article  CAS  Google Scholar 

  18. Burkov, V.I. and Lysenko, O., Absorption and circular-dichroism spectra of LaBGeO5–Cr4+ single crystal, Opt. Mater., 2010, vol. 33, no. 1, pp. 63–65.https://doi.org/10.1016/j.optmat.2010.08.003

    Article  CAS  Google Scholar 

  19. Hazenkamp, M.F., Güdel, H.U., Atanasov, M.U., Kesper, U., and Reinen, D., Optical spectroscopy of Cr4+-doped Ca2GeO4 and Mg2SiO4, Phys. Rev. B: Condens. Matter Mater. Phys., 1996, vol. 53, no. 5, pp. 2367–2377.https://doi.org/10.1103/PhysRevB.53.2367\

    Article  CAS  Google Scholar 

  20. Yankov, P., Cr4+:YAG Q-switching of Nd: host laser oscillators, J. Phys. D: Appl. Phys., 1994, vol. 27, no. 6, pp. 1118–1120.https://doi.org/10.1088/0022-3727/27/6/006

    Article  CAS  Google Scholar 

  21. Klimov, I.V., Nikol’skii, M.Yu., Tsvetkov, V.B., and Shcherbakov, I.A., Passive Q-switching of pulsed Nd3+ lasers using YSGG:Cr4+ crystal switches exhibiting phototropic properties, Quantum Electron. (Moscow), 1992, vol. 22, no. 7, pp. 603–605.https://doi.org/10.1070/QE1992v022n07ABEH003552

    Article  Google Scholar 

  22. Lipavsky, B., Kalisky, Y., Burshtein, Z., Shimony, Y., and Rotman, S., Some optical properties of Cr4+-doped crystals, Opt. Mater., 1999, vol. 13, no. 1, pp. 117–127.https://doi.org/10.1016/S0925-3467(99)00020-8

    Article  CAS  Google Scholar 

  23. Shimony, Y., Kalisky, Y., and Chai, B.T.H., Quantitative studies of Cr4+:YAG as a saturable absorber for Nd:YAG laser, Opt. Mater., 1995, vol. 4, no. 4, pp. 547–551.https://doi.org/10.1016/0925-3467(94)00127-8

    Article  CAS  Google Scholar 

  24. Shimony, Y., Burstein, Z., and Kalisky, Y., Cr4+:YAG as passive Q-switch and Brewster plate in a pulsed Nd:YAG laser, IEEE J. Quantum Electron., 1995, vol. 31, no. 10, pp. 1738–1741.https://doi.org/10.1109/3.466043

    Article  CAS  Google Scholar 

  25. Okhrimchuk, A.G. and Shestakov, A.V., Performance of YAG:Cr4+ laser crystal, Opt. Mater., 1994, vol. 3, no. 1, pp. 1–13. https://doi.org/10.1016/0925-3467-(94)90023-X

    Article  CAS  Google Scholar 

  26. Kück, S., Petermann, K., Pohlmann, U., and Huber, G., Near-infrared emission of Cr4+-doped garnets: lifetimes, quantum efficiencies, and emission cross sections, Phys. Rev. B: Condens. Matter Mater. Phys., 1995, vol. 51, no. 24, pp. 17323–17331.https://doi.org/10.1103/PhysRevB.51.17323

    Article  Google Scholar 

  27. Cr4+:YAG – Passive Q-Switch NORTHROP GRUMMAN. https://www.northropgrumman.com/BusinessVentures/SYNOPTICS/Products/SpecialtyCrystals/Documents/pageDocs/Cr4_data.pdf

  28. Seas, A., Petričević, V., and Alfano, R.R., Generation of sub-100-fs pulses from a cw mode-locked chromium-doped forsterite laser, Opt. Lett., 1992, vol. 1, no. 13, pp. 937–939.https://doi.org/10.1364/OL.17.000937

    Article  Google Scholar 

  29. Alcock, J., The Cr4+:YAG laser at 25 years: a review of the promise, progress, and limitations of this broad gain bandwidth 1.5 μm laser medium, IEEE Photonics Soc. Newslett., 2013, vol. 27, no. 3, pp. 14–17.

    Google Scholar 

  30. Ivanov, A.A., Kamalov, V.F., Lifanov, A.P., Lucassen, J., Minkov, B.I., and Slobodchikov, E.V., Generation of 85-fs pulses in a self-mode-locked Cr:Mg2SiO4 (forsterite) laser, Quantum Electron. (Moscow), 1993, vol. 23, no. 10, pp. 907–913.https://doi.org/10.1070/QE1993v023n10ABEH003192

    Article  Google Scholar 

  31. Demos, S.G., Petricevic, V., and Alfano, R.R., Up-converted luminescence and excited-state excitation spectroscopy of Cr4+ ions in forsterite, Phys. Rev. B: Condens. Matter Mater. Phys., 1955, vol. 52, no. 3, pp. 1544–1548.https://doi.org/10.1103/PhysRevB.52.1544

    Article  Google Scholar 

  32. Verdun, H.R., Thomas, L.M., Andrauskas, D.M., McCollum, T., and Pinto, A., Chromium-doped forsterite laser pumped with 1.06 μm radiation, Appl. Phys. Lett., 1988, vol. 53, no. 26, pp. 2593–2594.https://doi.org/10.1063/1.100537

    Article  CAS  Google Scholar 

  33. Alyabeva, L.N., Burkov, V.I., and Kotov, V.A., Luminescence of disordered crystals with langasite structure doped with chromium ions, J. Commun. Technol. Electron., 2017, vol. 62, no. 2, pp. 175–178.https://doi.org/10.1134/S1064226917020012

    Article  CAS  Google Scholar 

  34. Burkov, V.I., Gudenko, S.V., and Alyabeva, L.N., Optical and EPR spectroscopy of a La3Ga5SiO14:Mn crystal, J. Exp. Teor. Phys., 2014, vol. 119, no. 4, pp. 723–736.https://doi.org/10.1134/S1063776114100148

    Article  CAS  Google Scholar 

  35. Shannon, R.D., Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides, Acta Crystallogr. Sect. A: Cryst. Phys., Diffr., Theor. Gen. Crystallogr., 1976, vol. 32, no. 5, pp. 751–767.

    Article  Google Scholar 

  36. Geschwind, S., Kisliuk, P., Klein, M.P., Remeika, J.P., and Wood, D.L., Sharp-line fluorescence, electron paramagnetic resonance, and thermoluminescence of Mn4+ in a-Al2O3, Phys. Rev. B: Condens. Matter Mater. Phys., 1962, vol. 126, no. 5, pp. 1684–1686.https://doi.org/10.1103/PhysRev.126.1684

    Article  CAS  Google Scholar 

  37. Riseberg, L.A. and Weber, M.J., Solid state communication, spectrum and anomalous temperature dependence of the 2E4A2 emission of Y3Al5O12:Mn4+, Solid State Commun., 1971, vol. 9, no. 11, pp. 791–794.https://doi.org/10.1016/0038-1098(71)90565-5

    Article  CAS  Google Scholar 

  38. Capobianco, J.A., Cormier, G., Moncorge, R., Manaa, H., and Bettinelli, M., Gain measurements of Mn5+ (3d2) doped Sr5(PO4)3Cl and Ca2PO4Cl, Appl. Phys. Lett., 1992, vol. 60, no. 2, pp. 163–165.https://doi.org/10.1063/1.107002

    Article  CAS  Google Scholar 

  39. Suchocki, A., Allen, J.D., Powell, R.C., and Loiacono, G.M., Spectroscopy and four-wave mixing in Li4Ge5O12 :Mn4+ crystals, Phys. Rev. B: Condens. Matter Mater. Phys., 1987, vol. 36, no. 13, pp. 6729–6733.https://doi.org/10.1103/PhysRevB.36.6729

    Article  CAS  Google Scholar 

  40. Brenier, A., Suchocki, A., Pedrini, S., Boulon, G., and Madej, C., Spectroscopy of Mn4+-doped Ca-substituted gadolinium gallium garnet, Phys. Rev. B: Condens. Matter Mater. Phys., 1992, part II, vol. 46, no. 6, pp., 3219–3222.https://doi.org/10.1103/PhysRevB.46.3219

  41. Noginov, M.A. and Loutts, G.D., Spectroscopic studies of Mn4+ ion in yttrium orthoaluminate, J. Opt. Soc. Am. B, 1999, vol. 16, no. 1, pp. 3–11.https://doi.org/10.1364/JOSAB.16.000003

    Article  CAS  Google Scholar 

  42. Burkov, V., Alyabyeva, L., Mill, B., and Kotov, V., Optical spectroscopy of disordered Ca3Ga2Ge4O14 crystal doped with manganese, Opt. Mater., 2018, vol. 79, pp. 317–321.https://doi.org/10.1016/j.optmat.2018.03.057

    Article  CAS  Google Scholar 

  43. Landau, L.D. and Lifshitz, E.M., Kvantovaya mekhanika (Quantum Mechanics), Moscow: Fizmatgiz, 1963.

  44. Davis, T.S., Fackler, J.P., and Weeks, M.J., Spectra of manganese(III) complexes. Origin of the low-energy band, Inorg. Chem., 1968, vol. 7, no. 10, pp. 1994–2002.https://doi.org/10.1021/ic50068a007

    Article  CAS  Google Scholar 

  45. Blasse, G., Crystal chemistry and some magnetic properties of mixed metal oxides with spinel structure, Phillips Res. Rep.: Suppl., 1964, issue 3, pp. 1–139.

  46. Deren, P.J., Strek, W., Oetliker, U., and Gudel, H.U., Spectroscopic properties of Co2+ ions in MgAl2O4, Phys. Status Solidi B, 1994, vol. 182, no. 1, pp. 241–251.https://doi.org/10.1002/pssb.2221820125

    Article  CAS  Google Scholar 

  47. Orera, V.M., Merino, R., Cases, R., and Alcala, R., Luminescence of tetrahedrally coordinated Co2+ in zirconia, J. Phys. Condens. Matter, 1993, vol. 5, no. 22, pp. 3717–3726.https://doi.org/10.1088/0953-8984/5/22/023

    Article  CAS  Google Scholar 

  48. Donegan, J.F., Glynn, T.J., and Imbusch, G.F., FLN study of LiGa5O8:Co2+, J. Lumin., 1990, vol. 23, no. 1, pp. 23–25. https://doi.org/10.1016/0022-2313-(90)90095-S

    Article  Google Scholar 

  49. Donegan, J.F., Anderson, F.G., Bergin, F.J., Glyn, T.J., and Imbusch, G.F., Optical and magnetic-circular-dichroism-optically-detected-magnetic-resonance study of the Co2+ ion in LiGa5O8, Phys. Rev. B: Condens. Matter Mater. Phys., 1992, vol. 45, no. 2, pp. 563–573.https://doi.org/10.1103/PhysRevB.45.563

    Article  CAS  Google Scholar 

  50. Ferguson, J., Wood, D.L., and Knox, K., Crystal-field spectra of d3, d7 ions: II. KCoF3, CoCl2, CoBr2, and CoWO4, J. Chem. Phys., 1963, vol. 39, no. 4, pp. 881–889.https://doi.org/10.1063/1.1734387

    Article  CAS  Google Scholar 

  51. Johnson, L.F., Dietz, R.E., and Guggenheim, H.J., Spontaneous and stimulated emission from Co2+ ions in MgF2 and ZnF2, Appl. Phys. Lett., 1964, vol. 5, no. 2, pp. 21–22.https://doi.org/10.1063/1.1754029

    Article  CAS  Google Scholar 

  52. Weakliem, H.A., Optical spectra of Ni2+, Co2+, and Cu2+ in tetrahedral sites in crystals, J. Chem. Phys., 1962, vol. 36, no. 4, pp. 2117–2139.https://doi.org/10.1063/1.1732840

    Article  CAS  Google Scholar 

  53. Koidl, P., Optical absorption of Co2+ in ZnO, Phys. Rev. B: Condens. Matter Mater. Phys., 1977, vol. 15, no. 5, pp. 2493–2499.https://doi.org/10.1103/PhysRevB.15.2493

    Article  CAS  Google Scholar 

  54. Mill’, B.V., Synthesis of dugganite Pb3TeZn3As2O14 and its analogues, Russ. J. Inorg. Chem., 2009, vol. 54, no. 8, pp. 1205–1209.https://doi.org/10.1134/S0036023609080063

    Article  Google Scholar 

  55. Burkov, V.I., Alyabyeva, L.N., Denisov, Yu.V., and Mill, B.V., Optical spectroscopy of a La3Ga5SiO14:Co2+ crystal, Inorg. Mater., 2014, vol. 50, no. 11, pp. 1119–1124.https://doi.org/10.1134/S0020168514110041

    Article  CAS  Google Scholar 

  56. McClure, D.S., Optical spectra of transition metal ions in corundum, J. Chem. Phys., 1962, vol. 36, no. 10, pp. 2757–2779.https://doi.org/10.1063/1.1732364

    Article  CAS  Google Scholar 

  57. Wood, D.L. and Remeika, J.P., Optical absorption of tetrahedral Co3+ and Co2+ in garnets, J. Chem. Phys., 1967, vol. 46, no. 9, pp. 3595–3602.https://doi.org/10.1063/1.1841263

    Article  CAS  Google Scholar 

  58. Ferguson, J., Wood, D.L., and Van Uitert, L.G., Crystal-field spectra of d3,7 ions. V. Tetrahedral Co2+ in ZnAl2O4 spinel, J. Chem. Phys., 1969, vol. 51, no. 7, pp. 2904–2910.https://doi.org/10.1063/1.1672431

    Article  CAS  Google Scholar 

  59. Pappalardo, R. and Dietz, R.E., Absorption spectra of transition ions in CdS crystals, Phys. Rev., 1961, vol. 123, no. 4, pp. 1188–1203.https://doi.org/10.1103/PhysRev.123.1188

    Article  CAS  Google Scholar 

  60. Pappalardo, R., Wood, D.L., and Linares, R.C., Jr., Optical absorption study of Co-doped oxide systems II, J. Chem. Phys., 1961, vol. 35, no. 6, pp. 2041–2058.https://doi.org/10.1063/1.1732208

    Article  CAS  Google Scholar 

  61. Ferguson, J., Crystal-field spectra of d3,7 ions. I. Electronic absorption spectrum of Co\({\text{Cl}}_{4}^{ - }\) in three crystalline environments, J. Chem. Phys., 1963, vol. 39, no. 1, pp. 116–128.https://doi.org/10.1063/1.1733987

    Article  CAS  Google Scholar 

  62. Alyabyeva, L.N., Burkov, V.I., and Mill, B.V., Optical spectroscopy of La3Ga5SiO14 disordered crystal doped with Fe3+ ions, Opt. Mater., 2015, vol. 43, pp. 55–58.https://doi.org/10.1016/j.optmat.2015.02.023

    Article  CAS  Google Scholar 

  63. Basun, S.A., Evans, D.R., Bunning, T.J., Guha, S., Barnes, J.O., Cook, G., and Meltzer, R.S., Optical absorption spectroscopy of Fe2+ and Fe3+ ions in LiNbO3, J. Appl. Phys., 2002, vol. 92, no. 12, pp. 7051–7055.https://doi.org/10.1063/1.1519951

    Article  CAS  Google Scholar 

  64. Reyher, H.J., Hausfeld, N., and Pape, M., A magnetic circular dichroism and optically detected magnetic resonance investigation of Fe2+ and Fe3+ centres in KTaO3, J. Phys. Condens. Matter, 2000, vol. 12, no. 50, pp. 10599–10610.https://doi.org/10.1088/0953-8984/12/50/320

    Article  CAS  Google Scholar 

  65. Pott, G.T. and McNicol, B.D., Zero-phonon transition and fine structure in the phosphorescence of Fe3+ ions in ordered and disordered LiAl5O8, Chem. Phys., 1972, vol. 56, pp. 5246–5254.https://doi.org/10.1063/1.1677027

    Article  CAS  Google Scholar 

  66. Melamed, N.T., Neto, J.M., Abritta, T., and de Souza Barros, F., A comparison of the luminescence of LiAl5O8:Fe and LiGa5O8:Fe: II. Fe3+ in octahedral sites, J. Lumin., 1981, vols. 24/25, no. 3, pp. 249–252. https://doi.org/10.1016/0022-231-3(81)90264-7

    Article  Google Scholar 

  67. Wickersheim, K.A. and Lefever, R.A., Absorption spectra of ferric iron-containing oxides, Chem. Phys., 1962, vol. 36, pp. 844–850.https://doi.org/10.1063/1.1732620

    Article  CAS  Google Scholar 

  68. Wood, D.L. and Remeika, J.P., Effect of impurities on the optical properties of yttrium iron garnet, J. Appl. Phys., 1967, vol. 38, pp. 1038–1045.https://doi.org/10.1063/1.1709476

    Article  CAS  Google Scholar 

  69. Walker, G. and Glynn, T.J., Infra-red luminescence of iron-doped synthetic forsterite, J. Lumin., 1992, vol. 54, pp. 131–137. https://doi.org/10.1016/0022-2313-(92)90256-9

    Article  CAS  Google Scholar 

  70. Vala, M.T., Jr. and Mccarthy, P.J., Tetrahedral transition metal complex spectra: the tetrachloroferrate(III) anion, Spectrochim. Acta, 1970, vol. 26, no. 11, pp. 2183–2195.https://doi.org/10.1016/0584-8539(70)80161-1

    Article  CAS  Google Scholar 

  71. Sanamyan, T., Dubinskii, M., and Trivedi, S., Fluorescence Properties of Fe2+and Co2+Doped Hosts of CdMnTe Compositions as Potential Mid-Infrared Laser Materials, Adelphi: Army Research Laboratory, 2011, pp. 20783–21197, ARL-TR-5770.

  72. Misra, M.G. and Kripal, R., EPR, optical absorption and superposition model studies of Fe3+-doped cesium chloride single crystals: a case of substitutional as well as interstitial sites, Mol. Phys., 2012, vol. 110, no. 24, pp. 3001–3013.https://doi.org/10.1080/00268976.2012.692823

    Article  CAS  Google Scholar 

  73. Kripal, R., Pandey, Sh.D., and Misra, M.G., EPR, optical absorption and superposition model studies of Fe3+-doped diammonium hexaaqua magnesium sulfate: a case of hyperfine structure, Appl. Magn. Reson., 2013, vol. 44, no. 11, pp. 1295–1310. https://doi.org/10.1007/S00723-013-0483-5

    Article  CAS  Google Scholar 

  74. Pathak, N., Gupta, S.K., Sanyal, K., Kumar, M., Kadam, R.M., and Natarajan, V., Photoluminescence and EPR studies on Fe3+ doped ZnAl2O4: an evidence for local site swapping of Fe3+ and formation of inverse and normal phase, Dalton Trans., 2014, vol. 43, pp. 9313–9323.https://doi.org/10.1039/c4dt00741g

    Article  CAS  PubMed  Google Scholar 

  75. Melamed, N.T., Barros, F.S., Viccaro, P.J., and Artman, J.O., Optical properties of Fe3+ in ordered and disordered LiAl5O8, Phys. Rev. B: Condens. Matter Mater. Phys., 1972, vol. 5, no. 9, pp. 3377–3387.https://doi.org/10.1103/physrevb.5.3377

    Article  Google Scholar 

  76. White, W.B., Matsumura, M., Linnehan, D.G., Furukawa, T., and Chandrasekhar, B.K., Absorption and luminescence of Fe3+ in single-crystal orthoclase, Am. Mineral., 1986, vol. 71, pp. 1415–1419. https://pubs.geoscienceworld.org/msa/ammin/article-abstract/71/11-12/1415/104913

    CAS  Google Scholar 

  77. Heitz, R., Hoffmann, A., and Broser, I., Fe3+ center in ZnO, Phys. Rev. B: Condens. Matter Mater. Phys., 1992, vol. 45, no. 16, pp. 8977–8988.https://doi.org/10.1103/PhysRevB.45.8977

    Article  CAS  Google Scholar 

  78. Manning, P.G., Optical absorption spectra of Fe3+ in tetrahedral and octahedral sites in natural garnets, Can. Mineral., 1972, vol. 11, pp. 826–839. https://pubs.geoscienceworld.org/canmin/article-abstract/11/4/826/10874

    CAS  Google Scholar 

  79. Krebs, J.J. and Maisch, W.G., Exchange effects in the optical-absorption spectrum of Fe3+ in Al2O3, Phys. Rev. B: Condens. Matter Mater. Phys., 1971, vol. 4, no. 3, pp. 757–769.https://doi.org/10.1103/physrevb.4.757

    Article  Google Scholar 

  80. Sugano, S., Tanabe, Y., and Kamimura, H., Multiplets of Transition Metal Ions in Crystals, New York: Academic, p. 1970.

    Google Scholar 

  81. Snir, J. and Shellman, J., Optical activity of oriented helixes. Quadrupole contribution, J. Phys. Chem., 1973, vol. 77, no. 13, pp. 1653–1661.https://doi.org/10.1021/j100632a012

    Article  CAS  Google Scholar 

  82. Shellman, J., Circular dichroism and optical rotation, Chem. Rev., 1976, vol. 75, no. 23, pp. 323–331.https://doi.org/10.1021/cr60295a004

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. I. Burkov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Burkov, V.I., Alyabyeva, L.N. Optical Spectroscopy of Disordered Langasites Doped with Transition Metal Ions. Inorg Mater 56, 663–682 (2020). https://doi.org/10.1134/S0020168520070031

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0020168520070031

Keywords:

Navigation