Skip to main content
Log in

Synthesis and Photoluminescence of Cd1 –x(Ca,Sr)xS:Eu3+ Nanostructures in a Polyacrylate Matrix

  • Published:
Inorganic Materials Aims and scope

Abstract—

Colloidal Cd1 –x(Ca,Sr)xS and Cd1 –xCaxS:Eu3+ (0 < x < 0.20) quantum dots (QDs) have been synthesized by an emerging reagent method in a methylmethacrylate (MMA) medium. The mole fraction of Eu3+ in the starting reaction mixtures was varied from 0 to 0.80 relative to the Ca2+ concentration. Using radical block polymerization of MMA, we have obtained transparent luminescent polymethylmethacrylate (PMMA) based composites: PMMA/Cd1 –x(Ca,Sr)xS and PMMA/Cd1 –xCaxS:Eu3+. Luminescence excitation in the composites is due to interband electron transitions in the CdS and electron transitions from the ground state to excited states of the Eu3+ ions. The observed broadband luminescence is due to structural defects in the CdS crystals, and narrow-band luminescence originates from 5D07Fj electron transitions of the Eu3+ ions in the bulk of the CdS crystals, in complexes on their surface, and in the bulk of the polymer matrix, independent of the semiconductor particles. The position and intensity of the observed spectral bands depend on the composition and concentration of the components, excitation wavelength, and other factors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

Similar content being viewed by others

REFERENCES

  1. Kazankin, O.N., Markovskii, L.Ya., and Mironov, I.A., Neorganicheskie lyuminofory (Inorganic Phosphors), Leningrad: Khimiya, 1975.

  2. Morozova, N.K. and Kuznetsov, V.A., Sul’fid tsinka (Zinc Sulfide), Fok, M.V., Ed., Moscow: Nauka, 1987.

    Google Scholar 

  3. Khairutdinov, R.F., Chemistry of semiconductor nanoparticles, Russ. Chem. Rev., 1998, vol. 67, no. 2, pp. 109–122.

    Article  Google Scholar 

  4. Rempel, A.A., Nanotechnologies, properties, and applications of nanostructured materials, Russ. Chem. Rev., 2007, vol. 76, no. 5, pp. 435–461.https://doi.org/10.1070/RC2007v076n05ABEH003674

    Article  CAS  Google Scholar 

  5. Zgaren, I., Sellami, K., and Jaziri, S., Size-dependent optical properties in II–VI quantum-dot/quantum-well heterostructures, Sens. Lett., 2009, vol. 7, no. 5, pp. 967–971.https://doi.org/10.1166/sl.2009.1182

    Article  CAS  Google Scholar 

  6. Vorokh, A.S., Nazarova, S.Z., and Kozhevnikova, N.S., Effect of the size and structure factors on the magnetic susceptibility of nanoparticles of cadmium sulfide, Phys. Solid State, 2012, vol. 54, no. 6, pp. 1306–1311.https://doi.org/10.1134/S1063783412060364

    Article  CAS  Google Scholar 

  7. Masab, M., Haji, M., Shah, F., et al., Facile synthesis of CdZnS QDs: effects of different capping agents on the photoluminescence properties, Mater. Sci. Semicond. Process., 2018, no. 81, pp. 113–117.https://doi.org/10.1016/j.mssp.2018.03.023

  8. Vineeshkumar, T.V., Rithesh Raj, D., Prasanth, S., et al., Composition dependent structural, Raman and nonlinear optical properties of PVA capped Zn1 –xyCdxCuyS quantum dots, Opt. Mater., 2016, no. 58, pp. 128–135.https://doi.org/10.1016/j.optmat.2016.05.022

  9. Shtykov, S.N. and Rusanova, T.Yu., Nanomaterials and nanotechnologies in chemical and biochemical sensors: capabilities and applications, Russ. J. Gen. Chem., 2008, vol. 78, no. 12, pp. 2521–2531.https://doi.org/10.1134/S1070363208120323

    Article  CAS  Google Scholar 

  10. Bulanuy, M.F., Kovalenko, A.V., Polezaev, B.A., and Prokof’yev, T.A., Distribution of electric fields in ZnS:Mg single crystals during electroluminescence, Semiconductors, 2009, vol. 43, no. 6, pp. 716–720.https://doi.org/10.1134/S1063782609060050

    Article  CAS  Google Scholar 

  11. Xu, X., Lu, R., Zhao, X., et al., Novel mesoporous ZnxCd1 –xS nanoparticles as highly efficient photocatalysts, Appl. Catal., B, 2012, no. 125, pp. 11–20. https://doi.org/10.1016/j.apcatb.2012.05.018

  12. Sun, X., Xie, L., Pang, F., et al., Optical fiber amplifiers based on PbS/CdS QDs modified by polymers, Opt. Express, 2013, vol. 21, no. 7, pp. 8214–8219.https://doi.org/10.1364/OE.21.008214

    Article  CAS  PubMed  Google Scholar 

  13. Zhao, H., Liang, H., Vidal, F., et al., Size dependence of temperature-related optical properties of PbS and PbS/CdS core/shell quantum dots, J. Phys. Chem. C, 2014, vol. 118, no. 35, pp. 20585–20593.https://doi.org/10.1021/jp503617h

    Article  CAS  Google Scholar 

  14. Chandra, B.P., Chandra, V.K., and Jha, P., Luminescence of II–VI semiconductor nanoparticles, Solid State Phenom., 2015, vol. 222, pp. 1–65.https://doi.org/10.4028/www.scientific.net/SSP.222.1

    Article  CAS  Google Scholar 

  15. Ogurtsov, K.A., Sychev, M.M., Bakhmet’ev, V.V., et al., Preparation of core/shell luminescent structures by ion-plasma deposition, Inorg. Mater., 2015, vol. 51, no. 4, pp. 319–325.https://doi.org/10.1134/S0020168515040111

    Article  CAS  Google Scholar 

  16. Mandal, A.R., Ishteev, A.R., Volchemat’ev, S.A., et al., Synthesis of water-soluble core/shell CdS/ZnS nanoparticles at room temperature under ultrasonic irradiation: potential for human serum detection, Inorg. Mater., 2016, vol. 52, no. 3, pp. 256–261.https://doi.org/10.1134/S0020168516030109

    Article  CAS  Google Scholar 

  17. Rabouw, F.T. and de Mello Donega, C., Excited-state dynamics in colloidal semiconductor nanocrystals, Top. Curr. Chem., 2016, vol. 374, no. 5, pp. 58–62.https://doi.org/10.1007/s41061-016-0060-0

    Article  Google Scholar 

  18. Jafarov, M.A., Nasirov, E.F., and Jafarli, R.S., Growth and optical properties of nanostructured ZnS:Mn films, Inorg. Mater., 2017, vol. 53, no. 1, pp. 39–44. https://doi.org/10.1134/S0020168517010058

    Article  CAS  Google Scholar 

  19. Selopal, G.S., Haiguang Zhao, Xin Tong, et al., Highly stable colloidal “giant” quantum dots sensitized solar cells, Adv. Funct. Mater., 2017, vol. 27, paper 1701468.https://doi.org/10.1002/adfm.201770178

  20. Sadra Sadeghi, Baskaran Ganesh Kumar, Melikov, R., et al., Quantum dot white LEDs with high luminous efficiency, Optica, 2018. vol. 5, no. 7, pp. 793–802.https://doi.org/10.1364/OPTICA.5.000793

    Article  CAS  Google Scholar 

  21. Xin Tong, Xiang-Tian Kong, Chao Wang, et al., Optoelectronic properties in near-infrared colloidal heterostructured pyramidal “giant” core/shell quantum dots, Adv. Sci., 2018, paper 1800656.https://doi.org/10.1002/advs.201800656

  22. Yun, S.J., Dey, S., and Nam, K.-S., Zinc sulfide and terbium-doped zinc sulfide films grown by traveling wave reactor atomic layer epitaxy, J. Korean Phys. Soc., 1998, vol. 33, no. 2, pp. S454–S457.

    CAS  Google Scholar 

  23. Jing-hua, N., Rui-nian, H., Wen-lian, L., et al., Electroluminescent properties of a device based on terbium-doped ZnS nanocrystals, J. Phys. D: Appl. Phys., 2006, vol. 39, pp. 2357–2360. https://doi.org/10.1088/0022-3727/39/11/007

    Article  Google Scholar 

  24. Planelles-Aragó, J., Julián-López, B., Cordoncillo, E., et al., Lanthanide doped ZnS quantum dots dispersed in silica glasses: an easy one pot sol–gel synthesis for obtaining novel photonic materials, J. Mater. Chem., 2008, vol. 18, pp. 5193–5199.https://doi.org/10.1039/b809254k

    Article  CAS  Google Scholar 

  25. Mukherjee, P., Shade, C.M., Yingling, A.M., et al., Lanthanide sensitization in II–VI semiconductor materials: a case study with terbium(III) and europium(III) in zinc sulfide nanoparticles, J. Phys. Chem. A, 2011, vol. 115, no. 16, pp. 4031–4041.https://doi.org/10.1021/jp109786w

    Article  CAS  PubMed  Google Scholar 

  26. Mukherjee, P., Sloan, R.F., Shade, C.M., et al., Post-synthetic modification of II–VI nanoparticles to create Tb3+ and Eu3+ luminophores, J. Phys. Chem. C, 2013, vol. 117, no. 27, pp. 14451–14460.https://doi.org/10.1021/jp404947x

    Article  CAS  Google Scholar 

  27. Selishchev, A.V. and Pavlishchuk, V.V., Luminescence spectra of Eu2+-doped zinc sulfide nanoparticles, Teor. Eksp. Khim., 2015, vol. 51, no. 6, pp. 358–365.

    Google Scholar 

  28. Zhanguo Liang, Jun Mu, Lei Han, and Hongquan Yu, Microbe-assisted synthesis and luminescence properties of monodispersed Tb3+-doped ZnS nanocrystals, J. Nanomater., 2015, paper 519303. https://doi.org/10.1155/2015/519303

  29. Smagin, V.P., Eremina, N.S., Isaeva, A.A., and Lyakhova, Yu.V., Synthesis and luminescence spectra of polymethylmethacrylate/CdS:Ln(III) composites, Inorg. Mater., 2017, vol. 53, no. 3, pp. 263–270.https://doi.org/10.1134/S0020168517030086

    Article  CAS  Google Scholar 

  30. Smagin, V.P., Eremina, N.S., and Leonov, M.S., Luminescence spectra of polymethylmethacrylate/ZnS:Eu(III),Tb(III) composites, Inorg. Mater., 2018, vol. 54, no. 2, pp. 103–110.https://doi.org/10.1134/S0020168518020139

    Article  CAS  Google Scholar 

  31. Seleznev, S.A., Luminescence of crystalline phosphors based on alkaline-earth sulfide systems, Cand. Sci. (Chem.) Dissertation, Stavropol: North-Caucasus Federal Univ. Federal State Self-Supporting Educational Institution of Higher Occupational Education, 2015.

  32. Golota, A.F. and Seleznev, S.A., Luminescence and spectral characteristics of phosphors based on strontium calcium sulfides, Izv. Vyssh. Uchebn. Zaved.,Ser.: Khim. Khim. Tekhnol., 2015, vol. 58, no. 3, pp. 54–56.

    CAS  Google Scholar 

  33. Allsalu, M.-L.Yu., Mikhailin, V.V., S’’estnova, V.V., and Pedak, E.Yu., Photoluminescence of samarium-doped strontium sulfide, Vestn. Mosk. Gos. Univ., Ser. 3:Fiz. Astronom., 1984, vol. 25. no. 5, pp. 99–101.

    CAS  Google Scholar 

  34. Zhi-yi He, Yong-sheng, W., Li, S., and Xu-rong Xu, Optical absorption studies on the trapping states of CaS:Eu,Sm, J. Phys.: Condens. Matter, 2001, vol. 13, no. 15, pp. 3665–3675.

    CAS  Google Scholar 

  35. Biryukov, A.A., Izaak, T.I., Svetlichnyi, V.A., and Babkina, O.V., Technique of synthesis and optical properties of CdS/polymethylmethacrylate nanocomposites, Izv. Vyssh. Uchebn. Zaved.,Fiz., 2006, vol. 49, no. 12, pp. 81–85.

    Google Scholar 

  36. Biryukov, A.A., Photoassisted one-step synthesis of CdS/polyacrylate dispersions and nanocomposites, Cand. Sci. (Chem.) Dissertation, Tomsk: Tomsk. Gos. Univ., 2010.

  37. Denzler, D., Olschewski, M., and Sattler, K., Luminescence studies of localized gap states in colloidal ZnS nanocrystals, J. Appl. Phys., 1998, vol. 84, no. 5, pp. 2841–2845.

    Article  CAS  Google Scholar 

  38. Nakamoto, K., Infrared and Raman Spectra of Inorganic and Coordination Compounds, New York: Wiley, 1986.

    Google Scholar 

  39. Smagin, V.P. and Mokrousov, G.M., Fiziko-khimicheskie aspekty formirovaniya i svoistva opticheski prozrachnykh metallsoderzhashchikh polimernykh materialov (Physicochemical Aspects of Formation and Properties of Optically Transparent Metal-Containing Polymer Materials), Barnaul: Altaisk. Univ, 2014. http://elibrary.asu.ru/xmlui/bitstream/handle/asu/ 840/read.7book?sequence=1

  40. Isaeva, A.A., Smagin, V.P., and Zyablitskaya, V.A., The reaction between cadmium trifluoroacetate and thioacetamide in low-polar organic media, Russ. J. Inorg. Chem., 2019, vol. 64, no. 1, pp. 108–114.https://doi.org/10.1134/S003602361901011X

    Article  Google Scholar 

  41. Gotovtseva, E.Y., Biryukov, A.A., and Svetlichnyi, V.A., Stability and luminescence spectra of CdS and ZnS nanoparticle dispersions synthesized in various solvents, Izv. Vyssh. Uchebn. Zaved.,Fiz., 2013, vol. 56, no. 3, pp. 32–37.

    Google Scholar 

  42. Smagin, V.P., Eremina, N.S., Davydov, D.A., Nazarova, K.V., and Mokrousov, G.M., Cadmium sulfide photoluminescence in polymethylmethacrylate-based composites, Inorg. Mater., 2016, vol. 52, no. 6, pp. 611–617.https://doi.org/10.1134/S0020168516060157

    Article  CAS  Google Scholar 

  43. Smagin, V.P., Davydov, D.A., Unzhakova, N.M., and Biryukov, A.A., Synthesis and spectral properties of colloidal solutions of metal sulfides, Russ. J. Inorg. Chem., 2015, vol. 60, no. 12, pp. 1588–1593.https://doi.org/10.1134/S0036023615120244

    Article  CAS  Google Scholar 

  44. Vorokh, A.S., Kozhevnikova, N.S., and Rempel, A.A., Transition of the CdS disordered structure to the wurtzite structure with an increase in the nanoparticle size, Bull. Russ. Acad. Sci.: Phys., 2008, vol. 72, no. 10, pp. 1395–1398.https://doi.org/10.3103/S1062873808100250

    Article  Google Scholar 

  45. Vineeshkumar, T.V., Rithesh Raj, D., Prasanth, S., et al., Structural and optical studies of Zn1 –xCdxS quantum dots synthesized by in situ technique in PVA matrix, Opt. Mater., 2014, vol. 37, no. S, pp. 439–445.https://doi.org/10.1016/j.optmat.2014.06.037

  46. Saluja, J.K., Parganiha, Y., Tiwari, N., et al., Mechano and photoluminescence spectra of cadmium sulphide and cadmium selenide doped phosphors, Optik, 2016, vol. 127, no. 19, pp. 7958–7966.https://doi.org/10.1016/j.ijleo.2016.05.011

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. P. Smagin.

Additional information

Translated by O. Tsarev

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Smagin, V.P., Biryukov, A.A., Eremina, N.S. et al. Synthesis and Photoluminescence of Cd1 –x(Ca,Sr)xS:Eu3+ Nanostructures in a Polyacrylate Matrix. Inorg Mater 56, 557–566 (2020). https://doi.org/10.1134/S002016852006014X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S002016852006014X

Keywords:

Navigation