Skip to main content
Log in

Self-Propagating High-Temperature Synthesis of TiC + xC Composites

  • Published:
Inorganic Materials Aims and scope

Abstract—

TiC + xC composites comprising titanium carbide particles, unreacted carbon black particles, and a graphite nanofilm have been prepared by self-propagating high-temperature synthesis pressing. The fused titanium carbide particles form a robust skeleton, whose voids contain carbon black particles separated from the titanium carbide particles by the graphite nanofilm. We have examined the effect of composition and temperature on the resistivity of the TiC + xC composites. The resistivity of the composites has been shown to increase with increasing carbon content. In the temperature range 300–1300 K, the temperature coefficient of resistivity (TCR) of the TiC + 0.25C, TiC + 0.5C, and TiC + 0.75C composites is 8.9 × 10–4, 9.5 × 10–4, and 9.7 × 10–4 K–1, respectively. In the temperature range 1000–1010 K, the resistivity of the composites remains constant as a result of the ordering of the carbon sublattice in TiC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. Kiparisov, S.S., Levinskii, Yu.V., and Petrov, A.P., Karbid titana: poluchenie, svoistva, primenenie (Titanium Carbide: Preparation, Properties, and Applications), Moscow: Metallurgiya, 1987.

  2. Gusev, A.I., Disorder and long-range ordering non-stoichiometric interstitial compounds transition metal carbides, nitrides, and oxides, Phys. Status Solidi B, 1991, vol. 163, no. 1, pp. 17–54.https://doi.org/10.1002/pssb.2221630102

    Article  CAS  Google Scholar 

  3. Lipatnikov, V.N., Kottar, A., Zueva, L.V., and Gusev, A.I., Order–disorder phase transformations and electrical resistance of nonstoichiometric titanium carbide, Fiz. Tverd. Tela (S.-Peterburg), 1998, vol. 40, no. 7, pp. 1332–1340.

  4. Zueva, L.V. and Gusev, A.I., Effect of nonstoichiometry and ordering on the basic structure period of cubic titanium carbide, Fiz. Tverd. Tela (S.-Peterburg), 1999, vol. 41, no. 7, pp. 1134–1141.

  5. Prokudina, V.K., Ratnikov, V.I., Maslov, V.M., Borovinskaya, I.P., Merzhanov, A.G., and Dubovitskii, F.I., Titanium carbides production technology, in Protsessy goreniya v khimicheskoi tekhnologii i metallurgii (Combustion Processes in Chemical Technology and Metallurgy), Chernogolovka, 1975, pp. 136–141.

    Google Scholar 

  6. Merzhanov, A.G., Rogachev, A.S., Mukas’yan, A.S., and Khusid, B.M., Macrokinetics of structural transformations during gas-free combustion of titanium–carbon powder mixtures, Fiz. Goreniya Vzryva, 1990, no. 1, pp. 104–114.

  7. Advani, A.H., Thadhani, N.N., and Grebe, H.A., Dynamic modeling of material and process effects on self-propagating high-temperature synthesis of titanium carbide ceramics, J. Mater. Sci., 1992, vol. 27, no. 12, pp. 3309–3317.https://doi.org/10.1007/BF01116030

    Article  CAS  Google Scholar 

  8. Kobashi, M., Ichioka, D., and Kanetake, N., Combustion synthesis of porous TiC/Ti composite by a self-propagating mode, Materials, 2010, vol. 3, pp. 3939–3947.https://doi.org/10.3390/ma3073939

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Emel’yanov, A.N., Order–disorder phase transition of nonstoichiometric transition metal carbides, Fiz. Tverd. Tela (S.-Peterburg), 1996, no. 12, pp. 3678–3682.

  10. Karpov, A.V. and Kobyakov, V.P., Order–disorder phase transition of TiC0.55, Neorg. Mater., 1995, vol. 31, no. 5, pp. 655–659.

    Google Scholar 

  11. El-Eskandarany, M.S., Synthesis of nanocrystalline titanium carbide alloy powders by mechanical solid-state reaction, Metall. Mater. Trans. A, 1996, vol. 27, pp. 2374–2382.

    Article  Google Scholar 

  12. Pityulin, A.N., Force compaction in SHS processes, in Samorasprostranyayushchiisya vysokotemperaturnyi sintez: teoriya i praktika (Self-Propagating High-Temperature Synthesis: Theory and Practice), Sychev, A.E., Ed., Chernogolovka: Territoriya, 2001, pp. 333–353.

  13. Karpov, A.V., Morozov, Yu.G., Bunin, V.A., and Borovinskaya, I.P., Effect of yttria additions on the electrical conductivity of SHS nitride ceramics, Inorg. Mater., 2002, vol. 38, no. 6, pp. 631–634.

    Article  CAS  Google Scholar 

  14. Gorinskii, S.G., Shabalin, I.L., Beketov, A.R., and Kokorin, A.F., Electrical conductivity of carbide–carbon materials, Izv. Akad. Nauk SSSR,Neorg. Mater., 1979, vol. 15, no. 10, pp. 1769–1774.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. A. Shcherbakov.

Additional information

Translated by O. Tsarev

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shcherbakov, V.A., Gryadunov, A.N., Karpov, A.V. et al. Self-Propagating High-Temperature Synthesis of TiC + xC Composites. Inorg Mater 56, 567–571 (2020). https://doi.org/10.1134/S0020168520060102

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0020168520060102

Keywords:

Navigation