Skip to main content
Log in

Magnetic Separation Method for Isolating Rare-Earth Elements and Zirconium from Molten Salts

Inorganic Materials Aims and scope

Abstract—

The use of magnetic fields in nonaqueous spent nuclear fuel treatment processes involving molten salts opens up new possibilities for selective extraction of radionuclides. In this research, this approach has been applied to the selective extraction of rare-earth elements and zirconium. We have studied strontium hexaferrite and a spinel ferrite as a magnetic carrier, examined the feasibility of utilizing it alkali chloride melts, and analyzed the effect of process conditions (temperature, holding time, and Zr content) on the effectiveness of Nd and Zr extraction by magnetic separation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Orlova, A.I., High-temperature preconcentration of fuel cycle components via incorporation of double salts into crystalline matrices, Extended Abstract of Doctoral (Chem.) Dissertation, Leningrad, 1988.

  2. Lukinykh, A.N., Lavrinovich, Yu.G., et al., High-level waste composition, properties and preparation for long-term storage after pyroelectrochemical reprocessing of irradiated oxide uranium-plutonium fuel, 5th Int. Conf. on Recycling, Conditioning and Disposal, RECOD98, Nice, 1998, vol. 3, pp. 814–821.

  3. Volkovich, V.A., Griffiths, T.R., and Thied, R.C., Formation of lanthanide phosphates in molten salts and evaluation for nuclear waste treatment, Phys. Chem. Chem. Phys., 2003, vol. 5, no. 14, pp. 3053–3060.

    Article  CAS  Google Scholar 

  4. Lizin, A.A., Tomilin, S.V., and Chistyakov, V.M., Research at OAO GNTs NIIAR on the disposal of high-level waste from pyrochemical processes, Vopr. At. Nauki Tekh., Ser.: Materialoved. Novye Mater., 2014, no. 3, pp. 96–114.

  5. Mal’tsev, D.S., Volkovich, V.A., and Vasin, B.D., Diffusion coefficients of uranium(III) and (IV) ions in a eutectic LiCl–KCl–CsCl melt, Rasplavy, 2016, no. 3, pp. 226–237.

  6. Mal’tsev, D.S., Volkovich, V.A., and Vasin, B.D., Redox potentials of uranium in a molten eutectic mixture of lithium, potassium, and cesium chlorides, Rasplavy, 2016, no. 3, pp. 238–244.

  7. Kazakovtseva, N.A., Maikov, M.A., and Nikitina, E.V., Corrosion of 12Kh18N10T steel in a LiCl–KCl–nNdCl3 melt, Rasplavy, 2018, no. 3, pp. 344–349.

  8. Amamoto, I., Kofuji, H., Myochin, M., et al., Phosphates behavior in conversion of FP chlorides, J. Nucl. Mater., 2009, vol. 389, no. 1, pp. 142–148.

    Article  CAS  Google Scholar 

  9. Cho, Y.Z., Lee, T.K., Choi, J.H., et al., Eutectic (LiCl–KCl) waste salt treatment by sequential separation process, Nucl. Eng. Technol., 2013, vol. 45, no. 5, pp. 675–682.

    Article  CAS  Google Scholar 

  10. Harrison, M.T., Simms, H.E., Jackson, A., et al., Salt waste treatment from a LiCl–KCl based pyrochemical spent fuel treatment process, Radiochim. Acta, 2008, vol. 96, nos. 4–5, pp. 295–301.

    Article  CAS  Google Scholar 

  11. Koyama, T., Johnson, T.R., and Fischer, D.F., Distribution of actinides in molten chloride salt/cadmium metal system, J. Alloys Compd., 1992, vol. 189, no. 1, pp. 37–44.

    Article  CAS  Google Scholar 

  12. Hébant, P. and Picard, G.S., Equilibrium reaction between molecular and ionic species in pure LiCl and in LiCl–MCl (M = Na, K, Rb) melts investigated by computational chemistry, J. Mol. Struct., 1995, vol. 358, nos. 1–3, pp. 39–50.

    Article  Google Scholar 

  13. Roy, J.J., Grantham, L.F., Grimmet, D.L., et al., Thermodynamic properties of U, Np, Pu, and Am in molten LiCl–KCl eutectic and liquid cadmium, J. Electrochem. Soc., 1996, vol. 143, no. 8, pp. 2487–2492.

    Article  CAS  Google Scholar 

  14. Shirai, O., Iwai, T., Suzuki, Y., et al., Electrochemical behavior of actinide ions in LiCl–KCl eutectic melts, J. Alloys Compd., 1998, vols. 271–273, pp. 685–688.

    Article  Google Scholar 

  15. Lexa, D., On the reactive occlusion of the (uranium trichloride + lithium chloride + potassium chloride) eutectic salt in zeolite 4A, J. Nucl. Mater., 1999, vol. 279, no. 1, pp. 57–64.

    Article  Google Scholar 

  16. Iizuka, M., Uozumi, K., Inoue, T., et al., Behavior of plutonium and americium at liquid cadmium cathode in molten LiCl–KCl electrolyte, J. Nucl. Mater., 2001, vol. 299, no. 1, pp. 32–42.

    Article  CAS  Google Scholar 

  17. Simpson, M.F. and Gougar, M.L.D., Two-site equilibrium model for ion exchange between monovalent cations and zeolite-A in a molten salt, Ind. Eng. Chem. Res., 2003, vol. 42, no. 18, pp. 4208–4212.

    Article  CAS  Google Scholar 

  18. Serp, J., Konings, R.J.M., Malmbeck, R., et al., Electrochemical behavior of plutonium ion in LiCl–KCl eutectic melts, J. Electroanal. Chem., 2004, vol. 561, pp. 143–148.

    Article  CAS  Google Scholar 

  19. Kuznetsov, S.A., Hayashi, H., Minato, K., et al., Electrochemical behavior and some thermodynamic properties of UCl4 and UCl3 dissolved in a LiCl–KCl eutectic melt, J. Electrochem. Soc., 2005, vol. 152, no. 4, pp. 203–212.

    Article  Google Scholar 

  20. Kim, T.J., Jung, Y., Shim, J.B., et al., Study on physicochemical properties of U3+ in LiCl–KCl eutectic media at 773 K, J.Radioanal. Nucl., 2011, vol. 287, no. 1, pp. 347–350.

    Article  CAS  Google Scholar 

  21. Park, H.-S., Kim, I.-T., Cho, Y.-J., et al., Removal behavior of Cs from molten salt by using zeolitic materials, J. Radioanal. Nucl. Chem., 2010, vol. 283, no. 2, pp. 267–272.

    Article  CAS  Google Scholar 

  22. Wasnik, M., Carlson, K., and Simpson, M.F., Waste minimization of electrorefiner waste salt via dechlorination: a new approach, Trans. Am. Nucl. Soc., 2017, vol. 117, pp. 281–282.

    Google Scholar 

  23. Liu, K., Liu, Y.-L., Chai, Z.-F., et al., Evaluation of the electroextractions of Ce and Nd from LiCl–KCl molten salt using liquid Ga electrode, J. Electrochem. Soc., 2017, vol. 164, no. 4, pp. 169–178.

    Article  Google Scholar 

  24. Volkovich, V.A., Vasin, B.D., Mal’tsev, D.S., and Aleksandrov, D.E., RF Patent 2499306, Byull. Izobret., 2013, no. 32.

  25. Volkovich, V.A., Ivanov, A.B., Sobolev, A.A., Vasin, B.D., and Griffiths, T.R., An electrochemical and spectroelectrochemical study of Ln(II) (Ln = Sm, Eu, Yb) Species in NaCl–2CsCl melt, ECS Trans., 2014, vol. 64, no. 4, pp. 617–634.

    Article  CAS  Google Scholar 

  26. Pollert, E., Crystal chemistry of magnetic oxides: part 2. Hexagonal ferrites, Prog. Cryst. Growth, Charact. Mater., 1985, no. 11, pp. 155–205.

  27. Yamamoto, H. and Obara, G., Magnetic properties of anisotropic sintered magnets using Sr–La–Co system powders by mechanical compounding method, J. Jpn. Soc. Powder Powder Metall., 2000, vol. 47, pp. 796–800.

    Article  Google Scholar 

  28. Yamomoto, H. and Obara, G., Effect of La2O3 and Co3O4 Additives on Magnetic Properties of Sr-M ferrite by mechanical compounding method, J. Jpn. Soc. Powder Powder Metall., 2000, vol. 47, no. 2, pp. 160–164.

    Article  Google Scholar 

  29. Bashkirov, L.A., Krasovskaya, L.I., Velikanova, I.A., and Polyko, D.D., Crystal structure and magnetic properties of ferrites in the Sr1 –xLaxFe12 –xCuxO19 system, Tr. BGTU, Khim. Tekhnol. Neorg. Veshchestv, 2011, no. 3, pp. 43–50.

  30. Taguchi, H., Takeishi, T., and Suwa, K., High energy ferrite magnets, J. Phys. IV, 1997, no. 7 (C1), pp. C1-311–C1-312.

  31. Mocuta, H. and Morel, A., Structural and magnetic properties of hydrothermally synthesised Sr1– xNdxFe12O19 hexagonal ferrites, J. Alloys Compd., 2004, vol. 364, no. 1, pp. 48–52.

    Article  CAS  Google Scholar 

  32. Lechevallier, L., Le Breton, J.M., Morel, A., and Tenaud, P., Influence of the presence of Co on the rare earth solubility in M-type hexaferrite powders, J. Magn. Magn. Mater., 2007, vol. 316, no. 2, pp. 109–111.

    Article  Google Scholar 

  33. Lechevallier, L. and Le Breton, J.M., On the solubility of rare earths in M-type SrFe12O19 hexaferrite compounds, J. Phys. Condens. Matter, 2008, no. 20, pp. 175203–175212.

  34. Ze, W., Bashkirov, L.A., Trukhanov, S.V., et al., Crystal structure and magnetic properties of Sr1 –xSmxFe12 –x-CoxO19 solid solutions, Inorg. Mater., 2014, vol. 50, no. 3, pp. 290–295.

    Article  CAS  Google Scholar 

  35. Polyko, D.D., Bashkirov, L.A., Lobanovskii, L.S., and Trukhanov, S.V., Crystal structure and magnetic properties of high-coercivity Sr1– xNdxFe12– xZnxO19 and (Sr0.85Ca0.15)1– xNdxFe12– xZnxO19 ferrites at temperatures from 6 to 300 K in magnetic fields of up to 14 T, Tr. BGTU, Khim. Tekhnol. Neorg. Veshchestv, 2009, no. 3, pp. 83–84.

  36. Polyko, D.D., Bashkirov, L.A., Trukhanov, S.V., et al., Crystal structure and magnetic properties of high-coercivity Sr1 –xPrxFe12 –xZnxO19 solid solutions, Inorg. Mater., 2011, vol. 47, no. 1, pp. 79–84.

    Article  Google Scholar 

  37. Morishita, H., Amano, A., Ueda, H., et al., Single crystal growth of strontium ferrite with magnetoplumbite structure using the traveling solvent floating zone method, J. Jpn. Soc. Powder Powder Metall., 2014, vol. 61, no. S1, pp. S64–S66.

    Article  Google Scholar 

  38. Mathew, D.S. and Juang, R.S., An overview of the structure and magnetism of spinel ferrite nanoparticles and their synthesis in microemulsions, Chem. Eng. J., 2007, vol. 129, pp. 51–65.

    Article  CAS  Google Scholar 

  39. Ngomsik, A.F., Bee, A., Draye, M., et al., Magnetic nano- and microparticles for metal removal and environmental applications: a review, C. R. Chim., 2005, vol. 8, pp. 963–970.

    Article  CAS  Google Scholar 

  40. Gao, Z., Cui, F., Zeng, S., et al., A high surface area superparamagnetic mesoporous spinel ferrite synthesized by a template-free approach and its adsorptive property, Microporous Mesoporous Mater., 2010, vol. 132, nos. 1–2, pp. 188–195.

    Article  CAS  Google Scholar 

  41. Tu, Y.J., You, C.F., and Chang, C.K., Kinetics and thermodynamics of adsorption for Cd on green manufactured nano-particles, J. Hazard. Mater., 2012, vols. 235–236, pp. 116–122.

    Article  Google Scholar 

  42. Harikishore, K.R.D. and Yun, Y.S., Spinel ferrite magnetic adsorbents: alternative future materials for water purification?, Coord. Chem. Rev., 2016, vol. 315, pp. 90–111.

    Article  Google Scholar 

  43. Kefeni, K.K., Mamba, B.B., and Msagati, T.A.M., Application of spinel ferrite nanoparticles in water and wastewater treatment: a review, Sep. Purif. Technol., 2017, vol. 188, pp. 399–422.

    Article  CAS  Google Scholar 

  44. Krauskopf, K.B., Thorium and rare-earth metals as analogs for actinide elements, Chem. Geol., 1986, vol. 55, pp. 323–335.

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported through contract no. 63/3998 between Lobachevsky State University and the Leading Research Institute of Chemical Technology: Development of Methods for Isolating Actinides, Rare-Earth Elements, and Zirconium from Molten Salts.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. S. Alekseeva.

Additional information

Translated by O. Tsarev

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alekseeva, L.S., Savinykh, D.O., Orlova, A.I. et al. Magnetic Separation Method for Isolating Rare-Earth Elements and Zirconium from Molten Salts. Inorg Mater 56, 583–590 (2020). https://doi.org/10.1134/S0020168520060011

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0020168520060011

Keywords:

Navigation