Skip to main content
Log in

Si3N4–TiN Composites Produced by Hot-Pressing Silicon Nitride and Titanium Powders

  • Published:
Inorganic Materials Aims and scope

Abstract—

Si3N4–TiN ceramic composites have been produced by hot-pressing mixtures of silicon nitride and metallic titanium powders at temperatures from 1600 to 1800°C in a nitrogen atmosphere. We have examined the influence of the concentration and morphology of metallic Ti particles in the starting mixture and synthesis conditions on the microstructure, phase composition, and mechanical strength of the Si3N4–TiN ceramic composites. The results demonstrate that the sintering process ensures complete titanium nitridation, leading to the formation of a nonstoichiometric titanium nitride with the composition TiN0.9. The Si3N4–TiN composites prepared from the mixtures containing 5–30 wt % Ti have densities in the range 3.02–3.41 g/cm3, water absorption from 0.01 to 0.14%, open porosity from 0.03 to 0.44%, and bending strength from 250 to 584 MPa. The Si3N4–TiN ceramics prepared using calcium aluminates as sintering aids consist of dense intergrowths of silicon nitride crystallites, which ensures increased strength of the materials. Moreover, the samples containing 25–30 wt % TiN offer high electrical conductivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. Bellosi, A., Guicciardi, S., and Tampieri, A., Development and characterization of electroconductive Si3N4–TiN composite, J. Eur. Ceram. Soc., 1992, vol. 9, no. 2, pp. 83–93. https://doi.org/10.1016/0955-2219(92)90049-J

    Article  CAS  Google Scholar 

  2. Bracisiewicz, M., Medri, V., and Bellosi, A., Factors inducing degradation of properties after long term oxidation of Si3N4–TiN electroconductive composites, Appl. Surf. Sci., 2002, vol. 202, nos. 3–4, pp. 39–149. https://doi.org/10.1016/s0169-4332(02)00498-1

    Article  Google Scholar 

  3. Zivkovic, Lj., Nikolic, Z., Boskovic, S., and Miljkovic, M., Microstructural characterization and computer simulation of conductivity in Si3N4–TiN composites, J. Alloys Compd., 2004, vol. 373, nos. 1–2, pp. 231–236. https://doi.org/10.1016/j.jallcom.2003.10.036

    Article  CAS  Google Scholar 

  4. Martin, C., Cales, B., Vivier, P., and Mathieu, P., Electrical discharge machinable ceramic composites, Mater. Sci. Eng., A, 1989, vol. 109, pp. 351–356. https://doi.org/10.1016/0921-5093(89)90614-X

    Article  Google Scholar 

  5. Urbanovich V.S., Chuevskii A.V., Vlajic, M., Krstic, V.D., Turbinskii, S.S., and Yanushkevich, K.I., X-ray diffraction characterization of silicon nitride- and titanium nitride-based composites sintered at high pressures, Proc. FTTP-2005, Belaruss. Acad. Sci., 2005, pp. 454–456.

  6. Borodianska, H., Krushinskaya, L., Makarenko, G., Sakka, Y., Uvarova, I., and Vasylkiv, O., Si3N4–TiN nanocomposite by nitration of TiSi2 and consolidation by hot pressing and spark plasma sintering, J. Nanosci. Nanotechnol., 2009, vol. 9, no. 11, pp. 6381–6389. https://doi.org/10.1166/jnn.2009.1344

    Article  CAS  PubMed  Google Scholar 

  7. Kawano, S., Tsukurimichi, K., Takahashi, J., and Shimada, S., Preparation of nano-sized TiN coated α‑Si3N4 particles, J. Mater. Chem., 2001, vol. 11, no. 10, pp. 2625–2628. https://doi.org/10.1039/B102794H

    Article  CAS  Google Scholar 

  8. Kawano, S., Tsukurimichi, K., Takahashi, J., and Shimada, S., Highly electroconductive TiN/Si3N4 composite ceramics fabricated by spark plasma sintering of Si3N4 particles with a nano-sized TiN coating, J. Mater. Chem., 2002, vol. 12, no. 2, pp. 361–365. https://doi.org/10.1039/B107058B

    Article  CAS  Google Scholar 

  9. Zheng, S., Gao, L., Watanabe, H., and Meguro, T., Improving the microstructure of Si3N4–TiN composites using various PEIs to disperse raw TiO2 powder, Ceram. Int., 2007, vol. 33, no. 3, pp. 355–359. https://doi.org/10.1016/j.ceramint.2005.10.003

    Article  CAS  Google Scholar 

  10. Duan, R.-G., Roebben, G., and Van der Biest, O., TiO2 additives for in situ formation of toughened silicon nitride-based composites, Mater. Lett., 2003, vol. 57, nos. 26–27, pp. 4156–4161. https://doi.org/10.1016/S0167-577X(03)00282-9

    Article  CAS  Google Scholar 

  11. Duan, R.-G., Roebben, G., and Vleugels, J., Effect of TiX (X = C, N, O) additives on microstructure and properties of silicon nitride based ceramics, Scr. Mater., 2005, vol. 53, no. 6, pp. 669–673. https://doi.org/10.1016/j.scriptamat.2005.05.024

  12. Krnel, K., Maglica, A., and Kosma, T., β-SiAlON/TiN nanocomposites prepared from TiO2-coated Si3N4 powder, J. Eur. Ceram. Soc., 2008, vol. 28, no. 5, pp. 953–957. https://doi.org/10.1016/j.jeurceramsoc.2007.09.021

    Article  CAS  Google Scholar 

  13. Maglica, A., Krnel, K., and Kosmac, T., Preparation of Si3N4–TiN ceramic composites (priprava keramicnih kompozitov na osnivi Si3N4–TiN), Mater. Tehnol., 2010, vol. 44, no. 1, pp. 31–35.

    CAS  Google Scholar 

  14. Kawano, S., Takahashi, J., and Shimada, S., Spark plasma sintering of nano-sized TiN prepared from TiO2 by controlled hydrolysis of TiCl4 and Ti(O-i-C3H7)4 solution, J. Am. Ceram. Soc., 2003, vol. 86, no. 9, pp. 1609–1611. https://doi.org/10.1111/j.1151-2916.2003.tb03524.x

    Article  CAS  Google Scholar 

  15. Kargin, Yu.F., Ivicheva, S.N., Lysenkov, A.S., Ovsyannikov, N.A., Shvorneva, L.I., and Solntsev, K.A., Si3N4/TiN composites produced from TiO2-modified Si3N4 powders, Inorg. Mater., 2012, vol. 48, no. 9, pp. 1017–1022. https://doi.org/10.1134/S0020168512090087

    Article  CAS  Google Scholar 

  16. Ahmad, N. and Sueyoshi, H., Properties of Si3N4–TiN composites fabricated by spark plasma sintering by using a mixture of Si3N4 and Ti powders, Ceram. Int., 2010, vol. 36, no. 2, pp. 491–496. https://doi.org/10.1016/j.ceramint.2009.09.029

    Article  CAS  Google Scholar 

  17. Kuznetsov, K.B., Stetsovskii, A.P., Chernyavskii, A.S., and Solntsev, K.A., Preparation of monolithic titanium nitride, Perspekt. Mater., 2008, no. 1, pp. 56–59.

  18. Kuznetsov, K.B., Study of phase composition of compact ceramics based on titanium nitride, Inorg. Mater., 2015, vol. 51, no. 15, pp. 1443–1446. https://doi.org/10.1134/S002016851515011X

    Article  CAS  Google Scholar 

  19. Kovalev, I.A., Kuznetsov, K.B., Zufman, V.Yu., Ogarkov, A.I., Shevtsov, S.V., Kannykin, S.V., Chernyavskii, A.S., and Solntsev, K.A., High-temperature titanium nitridation kinetics, Inorg. Mater., 2016, vol. 52, no. 12, pp. 1230–1234. https://doi.org/10.1134/S0020168516120050

    Article  CAS  Google Scholar 

  20. Kuznetsov, K.B., Shokod’ko, A.V., Ashmarin, A.A., Ogarkov, A.I., Shashkeev, K.A., Shevtsov, S.V., Chernyavskii, A.S., and Solntsev, K.A., Single-step preparation of ceramics based on titanium, zirconium, and hafnium nitrides with a tailored shape, Perspekt. Mater., 2015, no. 2, pp. 70–78.

Download references

Funding

This work was supported by the Russian Federation Ministry of Science and Higher Education (state research target no. 075-00746-19-00) and the Presidium of the Russian Academy of Sciences (basic research program no. 35: Scientific Principles of Designing Novel Functional Materials).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. S. Lysenkov.

Additional information

Translated by O. Tsarev

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lysenkov, A.S., Kim, K.A., Kargin, Y.F. et al. Si3N4–TiN Composites Produced by Hot-Pressing Silicon Nitride and Titanium Powders. Inorg Mater 56, 309–313 (2020). https://doi.org/10.1134/S0020168520030115

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0020168520030115

Keywords:

Navigation