Skip to main content
Log in

Ceramic Materials in the Tricalcium Phosphate–Trimagnesium Phosphate System

  • Published:
Inorganic Materials Aims and scope

Abstract—

We have synthesized powders and produced ceramic materials in the tricalcium phosphate–trimagnesium phosphate system with a degree of Mg2+ substitution for Ca2+ up to 40 wt %. It has been shown that increasing the percentage of magnesium in the materials reduces their sintering temperature from 1300 to 1100°C. We have determined the phase composition of the materials and examined their microstructure. The results demonstrate that the addition of Mg2+ ions reduces the precipitation of Ca2+ ions from the ceramics to model fluids and leads to a considerable increase in their three-point bend strength: to 95–120 MPa.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. Samavedi, S., Whittington, A.R., and Goldstein, A.S., Calcium phosphate ceramics in bone tissue engineering: a review of properties and their influence on cell behavior, Acta Biomater., 2013, vol. 9, no. 9, pp. 8037–8045. https://doi.org/10.1016/j.actbio.2013.06.014

    Article  CAS  PubMed  Google Scholar 

  2. Goldberg, M.A., Smirnov, V.V., Teterina, A.Yu., Barinov, S.M., and Komlev, V.S., Trends in development of bioresorbable calcium phosphate ceramic materials for bone tissue engineering, Polym. Sci.,Ser. D, 2018, vol. 11, no. 4, pp. 419–422. https://doi.org/10.1134/S1995421218040056

    Article  CAS  Google Scholar 

  3. Smirnov, V.V., Goldberg, M.A., Shvorneva, L.I., Fadeeva, I.V., Shibaeva, T.V., and Barinov, S.M., Synthesis of composite biomaterials in the hydroxyapatite–calcite system, Dokl. Chem., 2010, vol. 432, part 1, pp. 151–154.

    Article  CAS  Google Scholar 

  4. Kubarev, O.L., Komlev, V.S., Maitz, M., and Barinov, S.M., Bioactive composite ceramics in the hydroxyapatite–tricalcium phosphate system, Dokl. Chem., 2007, vol. 413, part 1, pp. 72–74.

    Article  CAS  Google Scholar 

  5. Dorozhkin, S.V., Multiphasic calcium orthophosphate (CaPO4) bioceramics and their biomedical applications, Ceram. Int., 2016, vol. 42, no. 6, pp. 6529–6554. https://doi.org/10.1016/j.ceramint.2016.01.0620

    Article  CAS  Google Scholar 

  6. Bodde, E.W., Wolke, J.G., Kowalski, R.S., and Jansen, J.A., Bone regeneration of porous β-tricalcium phosphate (Conduit TCP) and of biphasic calcium phosphate ceramic (Biosel) in trabecular defects in sheep, J. Biomed. Mater. Res. A, 2007, vol. 82, no. 3, pp. 711–722. https://doi.org/10.1002/jbm.a.30990

    Article  CAS  PubMed  Google Scholar 

  7. LeGeros, R.Z., Lin, S., Rohanizadeh, R., Mijares, D., and LeGeros, J.P., Biphasic calcium phosphate bioceramics: preparation, properties and applications, J. Mater. Sci. Mater. Med., 2003, vol. 14, pp. 201–209. https://doi.org/10.1023/A:1022872421333

    Article  CAS  PubMed  Google Scholar 

  8. Kwon, S.-H., Jun, Y.-K., Hong, S.-H., and Kim, H.-E., Synthesis and dissolution of β-TCP and HA/β-TCP, J. Eur. Ceram. Soc., 2003, vol. 23, no. 7, pp. 1039–1045. https://doi.org/10.1016/S0955-2219(02)00263-7

    Article  CAS  Google Scholar 

  9. Kakei, M., Nakahara, H., Tamura, N., Itoh, H., and Kumegawa, M., Behavior of carbonate and magnesium ions in the initial crystallites at the early developmental stages of the rat calvaria, Ann. Anat., 1997, vol. 179, no. 4, pp. 311–316. https://doi.org/10.1016/S0940-9602(97)80065-9

    Article  CAS  PubMed  Google Scholar 

  10. Bigi, A., Compostella, L., and Fishera, A.M., Structural and chemical characterization of inorganic deposits in calcified human mitral valve, J. Inorg. Biochem., 1988, vol. 34, no. 2, pp. 75–82. https://doi.org/10.1016/0162-0134(88)85019-0

    Article  CAS  PubMed  Google Scholar 

  11. Boskey, A.L. and Posner, A.S., Effect of magnesium on lipid-induced calcification: an in vitro model for bone mineralization, Calcif. Tissue Int., 1980, vol. 32, no. 1, pp. 139–143. https://doi.org/10.1007/BF02408533

    Article  CAS  PubMed  Google Scholar 

  12. Goldberg, M.A., Smirnov, V.V., Antonova, O.S., Khairutdinova, D.R., Smirnov, S.V., Krylov, A.I., Sergeeva, N.S., Sviridova, I.K., Kirsanova, V.A., Akhmedova, S.A., Zhevnenko, S.N., and Barinov, S.M., Magnesium-substituted calcium phosphate bone cements containing MgO as a separate phase: synthesis and in vitro behavior, Mendeleev Commun., 2018, vol. 28, no. 3, pp. 329–331. https://doi.org/10.1016/j.mencom.2018.05.034

    Article  CAS  Google Scholar 

  13. Mestres, G. and Ginebra, M.P., Novel magnesium phosphate cements with high early strength and antibacterial properties, Acta Biomater., 2011, vol. 7, no. 4, pp. 1853–1861. https://doi.org/10.1016/j.actbio.2010.12.008

    Article  CAS  PubMed  Google Scholar 

  14. Ostrowski, N., Sharma, V., Roy, A., and Kumta, P.N., Systematic assessment of synthesized tri-magnesium phosphate powders (amorphous, semi-crystalline and crystalline) and cements for ceramic bone cement applications, J. Mater. Sci. Technol., 2015, vol. 31, no. 5, pp. 437–444. https://doi.org/10.1016/j.jmst.2014.12.002

    Article  CAS  Google Scholar 

  15. Brückner, T., Hurle, K., Stengele, A., Groll, J., and Gbureck, U., Mechanical activation and cement formation of trimagnesium phosphate, J. Am. Ceram. Soc., 2018, vol. 101, no. 5, pp. 1830–1834. https://doi.org/10.1111/jace.15397

    Article  CAS  Google Scholar 

  16. Goldberg, M.A., Smirnov, V.V., Kasimova, M.R., Shvorneva, L.I., Kutsev, S.V., Antonova, O.S., and Barinov, S.M., Ceramics in the system calcium phosphates–magnesium phosphates with (Ca + Mg)/P ≈ 2, Dokl. Chem., 2015, vol. 461, no. 1, pp. 81–85. https://doi.org/10.1134/S0012500815030015

    Article  CAS  Google Scholar 

  17. Kaygili, O., Tatar, C., and Yakuphanoglu, F., Structural and dielectrical properties of Mg3–Ca3(PO4)2 bioceramics obtained from hydroxyapatite by sol–gel method, Ceram. Int., 2012, vol. 38, no. 7, pp. 5713–5722. https://doi.org/10.1016/j.ceramint.2012.04.016

    Article  CAS  Google Scholar 

  18. Slawski, K., Badania Nad Nawozami Fosforowymi Wapniowo-Magnezowymi. I. Przekroj Pseudobinary Ca3(PO4)2–Mg3(PO4)2 W Ukladzie Potrojnym CaO–MgO–P2O, Chem. Stosow.,Ser. A, 1966, vol. 10, no. 3, pp. 305–318.

    CAS  Google Scholar 

  19. Yamada, S., Heymann, D., Bouler, J.-M., and Daculsi, G., Osteoclastic resorption of calcium phosphate ceramics with different hydroxyapatite/β-tricalcium phosphate ratios, Biomaterials, 1997, vol. 18, no. 15, pp. 1037–1041. https://doi.org/10.1016/S0142-9612(97)00036-7

    Article  CAS  PubMed  Google Scholar 

  20. Frasnelli, M. and Sglavo, V.M., Effect of Mg2+ doping on beta–alpha phase transition in tricalcium phosphate (TCP) bioceramics, Acta Biomater., 2016, vol. 33, pp. 283–289. https://doi.org/10.1016/j.actbio.2016.01.015

    Article  CAS  PubMed  Google Scholar 

  21. Xue, W., Dahlquist, K., Banerjee, A., Bandyopadhyay, A., and Bose, S., Synthesis and characterization of tricalcium phosphate with Zn and Mg based dopants, J. Mater. Sci.–Mater. Med., 2008, vol. 19, no. 7, pp. 2669–2677. https://doi.org/10.1007/s10856-008-3395-4

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by the Russian Foundation for Basic Research, scientific project no. 18-33-20170.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Goldberg.

Additional information

Translated by O. Tsarev

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Goldberg, M.A., Smirnov, V.V., Antonova, O.S. et al. Ceramic Materials in the Tricalcium Phosphate–Trimagnesium Phosphate System. Inorg Mater 56, 314–320 (2020). https://doi.org/10.1134/S0020168520030036

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0020168520030036

Keywords:

Navigation