Skip to main content
Log in

Carbonization of Brominated Adamantane and Nanodiamond Formation at High Pressures

  • Published:
Inorganic Materials Aims and scope

Abstract

Dibromoadamantane, C10H14Br2, carbonization has been studied in detail at a pressure of 8 GPa and temperatures of up to 1700°C. The results demonstrate that, starting at dibromoadamantane decomposition temperatures in the range 600–700°C, the major solid carbonization product is nanodiamond. Relatively low, well-controlled synthesis parameters offer the possibility of controlling the size, morphology, and structure of nanodiamond.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. Shenderova, O.A., Shames, A.I., Nunn, N.A., Torelli, M.D., Vlasov, I., and Zaitsev, A., Review article: synthesis, properties, and applications of fluorescent diamond particles, J. Vac. Sci. Technol., B, 2019, vol. 37, paper 030 802.

  2. Ekimov, E.A. and Kondrin, M.V., Unconventional synthesis of nano- and microcrystalline diamond under high static pressures, Usp. Fiz. Nauk, 2019, vol. 189, pp. 208–216.

    Article  Google Scholar 

  3. Ekimov, E.A., Kudryavtsev, O.S., Turner, S., Korneychuk, S., Sirotinkin, V.P., Dolenko, T.A., Vervald, A.M., and Vlasov, I., The effect of molecular structure of organic compound on direct high-pressure synthesis of boron-doped nanodiamonds, Phys. Status Solidi A, 2016, vol. 213, paper 2582.

  4. Ekimov, E.A., Kudryavtsev, O.S., Mordvinova, N.E., Lebedev, O.I., and Vlasov, I.I., High-pressure synthesis of nanodiamonds from adamantane: myth or reality?, ChemNanoMat, 2018, vol. 4, pp. 269–273.

    Article  CAS  Google Scholar 

  5. Ekimov, E.A., Kondrina, K.M., Mordvinova, N.E., Lebedev, O.I., Pasternak, D.G., and Vlasov, I.I., High-pressure, high-temperature synthesis of nanodiamond from adamantane, Inorg. Mater., 2019, vol. 55, no. 5, pp. 437–442.

    Article  CAS  Google Scholar 

  6. Onodera, A., Suito, K., and Morigami, Y., High-pressure synthesis of diamond from organic compounds, Proc. Jpn. Acad. B, 1992, vol. 68, pp. 167–171.

    Article  CAS  Google Scholar 

  7. Wentorf, R.H., The behavior of some carbonaceous materials at very high pressures and high temperatures, J. Phys. Chem., 1965, vol. 69, pp. 3063–3069.

    Article  CAS  Google Scholar 

  8. Onodera, A. and Suito, K., Synthesis of diamond from carbonaceous materials, Proc. AIRAPT-17, Hawaii, 1999, pp. 875–880.

  9. Ekimov, E.A., Kudryavtsev, O.S., Khomich, A.A., Lebedev, O.I., Dolenko, T.A., and Vlasov, I.I., High-pressure synthesis of boron-doped ultrasmall diamonds from an organic compound, Adv. Mater., 2015, vol. 27, pp. 5518–5522.

    Article  CAS  Google Scholar 

  10. Kondrina, K.M., Kudryavtsev, O.S., Vlasov, I.I., Khmelnitskiy, R.A., and Ekimov, E.A., High-pressure synthesis of microdiamonds from polyethylene terephthalate, Diamond Relat. Mater., 2018, vol. 83, pp. 190–195.

    Article  CAS  Google Scholar 

  11. Ekimov, E.A., Lyapin, S.G., Grigoriev, Yu.V., Zibrov, I.P., and Kondrina, K.M., Size-controllable synthesis of ultrasmall diamonds from halogenated adamantanes at high static pressure, Carbon, 2019, vol. 150, pp. 436–438.

    Article  CAS  Google Scholar 

  12. Costa, G.C.C., Shenderova, O., Mochalin, V., Gogotsi, Y., and Navrotsky, A., Thermochemistry of nanodiamond terminated by oxygen containing functional groups, Carbon, 2014, vol. 80, pp. 544–550.

    Article  CAS  Google Scholar 

  13. Skrobas, K., Stelmakh, S., Gierlotka, S., and Palosz, B., A model of density waves in atomic structure of nanodiamond by molecular dynamics simulations, Diamond Relat. Mater., 2019, vol. 91, pp. 1–14.

    Article  CAS  Google Scholar 

  14. Stelmakh, S., Skrobas, K., Gierlotka, S., and Palosz, B., Atomic structure of nanodiamond and its evolution upon annealing up to 1200°C: real space neutron diffraction analysis supported by MD simulations, Diamond Relat. Mater., 2019, vol. 93, pp. 139–149.

    Article  CAS  Google Scholar 

  15. Davydov, V.A., Rakhmanina, A.V., Rols, S., Agafonov, V., Pulikkathara, M.X., Wal, R.L., and Khabashesku, V.N., Size-dependent phase transition of diamond to graphite at high pressures, J. Phys. Chem. C, 2007, vol. 111, pp. 12 918–12 925.

  16. Kondo, K., Sawai, S., Akaishi, M., and Yamaoka, S., Deformation behaviour of shock-synthesized diamond powder under high pressure and high temperature, J. Mater. Sci. Lett., 1993, vol. 12, pp. 1383–1385.

    Article  CAS  Google Scholar 

  17. Ekimov, E.A., Zoteev, A., and Borovikov, N.F., Sintering of a nanodiamond in the presence of cobalt, Inorg. Mater., 2009, vol. 45, no. 5, pp. 491–494.

    Article  CAS  Google Scholar 

  18. Ferrari, A.C. and Robertson, J., Raman spectroscopy of amorphous, nanostructured, diamond-like carbon, and nanodiamond, Phil. Trans. R. Soc. A, 2004, vol. 362, pp. 2477–2512.

    Article  CAS  Google Scholar 

  19. Osswald, S., Mochalin, V.N., Havel, M., Yushin, G., and Gogotsi, Y., Phonon confinement effects in the Raman spectrum of nanodiamond, Phys. Rev. B: Condens. Matter Mater. Phys., 2009, vol. 80, paper 075 419.

  20. Tiwari, A.K., Goss, J.P., Briddon, P.R., Wright, N.G., Horsfall, A.B., and Rayson, M.J., Bromine functionalisation of diamond: an ab initio study, Phys. Status Solidi A, 2012, vol. 209, pp. 1703–1708.

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

We are grateful to I.P. Zibrov, N.F. Borovikov, and K.M. Kondrina for their assistance with this study.

In our transmission electron microscopic work, we used equipment at the Shared Research Facilities Center, Crystallography and Photonics Federal Research Center, Russian Academy of Sciences.

Funding

This work was supported by the Russian Science Foundation (project no. 19-12-00407) and the Russian Federation Ministry of Science and Higher Education (state research target for the Crystallography and Photonics Federal Research Center, Russian Academy of Sciences).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. A. Ekimov.

Additional information

Translated by O. Tsarev

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ekimov, E.A., Lyapin, S.G. & Grigor’ev, Y.V. Carbonization of Brominated Adamantane and Nanodiamond Formation at High Pressures. Inorg Mater 56, 338–345 (2020). https://doi.org/10.1134/S0020168520030024

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0020168520030024

Keywords:

Navigation