Skip to main content
Log in

Deposition of Iron on the Surface of Titanium Microparticles

  • Published:
Inorganic Materials Aims and scope

Abstract—

An Fe–Ti bimetallic system has been prepared by reducing Fe(III) ions on metallic titanium particles in an aqueous solution. Scanning electron microscopy and Auger electron spectroscopy have been used to examine the surface morphology of the particles and determine the elemental composition of their near-surface region. The material has been shown to consist of (1) aggregates ranging widely in size, from a few to several hundred microns, which are, in turn, agglomerates of smaller particles, about 100 nm in size, and (2) irregularly shaped, bulk, continuous particles. According to X-ray diffraction characterization results, the samples contain the metallic phases α-Fe and α-Ti.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Polmear, I., StJohn, D., Nie, J.-F., and Qian, Ma, Light Alloys: Metallurgy of the Light Metals, Amsterdam: Elsevier, 2017.

  2. Alves, A.C., Wenger, F., Ponthiaux, P., Celis, J.-P., Pinto, A.M., Rocha, L.A., and Fernandes, J.C.S., Corrosion mechanisms in titanium oxide-based films produced by anodic treatment, Electrochim. Acta, 2017, vol. 234, pp. 16–27. https://doi.org/10.1016/j.electacta.2017.03.011

    Article  CAS  Google Scholar 

  3. Sukhotin, A.M., Spravochnik po elektrokhimii (Handbook of Electrochemistry), Leningrad: Khimiya, 1981.

  4. Wilhelmsen, W. and Grande, A.P., The influence of hydrofluoric acid and fluoride ion on the corrosion and passive behaviour of titanium, Electrochim. Acta, 1987, vol. 32, no. 10, pp. 1469–1474. https://doi.org/10.1016/0013-4686(87)85088-0

    Article  CAS  Google Scholar 

  5. Munirathinam, B., Narayanan, R., and Neelakantan, L., Electrochemical and semiconducting properties of thin passive film formed on titanium in chloride medium at various pH conditions, Thin Solid Films, 2016, vol. 598, pp. 260–270. https://doi.org/10.1016/j.tsf.2015.12.025

    Article  CAS  Google Scholar 

  6. Baehre, D., Ernst, A., Weibhaar, K., Natter, H., Stolpe, M., and Busch, R., Electrochemical dissolution behavior of titanium and titanium-based alloys in different electrolytes, Proc. CIRP, 2016, vol. 42, pp. 137–142. https://doi.org/10.1016/j.procir.2016.02.208

  7. Hu, P., Song, R., Li, X.-J., Deng, J., Chen, Z.-Y., Li, Q.-W., Wang, K.-S., Cao, W.-C., Liu, D.-X., and Yu, H.-L., Influence of concentrations of chloride ions on electrochemical corrosion behavior of titanium–zirconium–molybdenum alloy, J. Alloys Compd., 2017, vol. 708, pp. 367–372. https://doi.org/10.1016/j.jallcom.2017.03.025

    Article  CAS  Google Scholar 

  8. Garfias-Mesias, L.F., Alodan, M., James, P.I., and Smyri, W.H., Determination of precursor sites for pitting corrosion of polycrystalline titanium by using different techniques, J. Electrochem. Soc., 1998, vol. 145, no. 6, pp. 2005–2010. https://doi.org/10.1149/1.1838590

    Article  CAS  Google Scholar 

  9. Huo, S. and Meng, X., The states of bromide on titanium surface prior to pit initiation, Corros. Sci., 1990, vol. 31, pp. 281–286. https://doi.org/10.1016/0010-938X(90)90120-T

    Article  CAS  Google Scholar 

  10. Dikusar, A.I., Davydov, A.D., Molin, A.N., and Engel’gardt, G.R., Development of thermokinetic instability during anodic activation of titanium, Elektrokhimiya, 1987, vol. 23, pp. 963–967.

    CAS  Google Scholar 

  11. Elektroliticheskoe osazhdenie zheleza (Electrodeposition of Iron), Zaidman, G.N., Ed., Kishinev: Shtiintsa, 1990.

  12. Dresvyannikov, A.F. and Kolpakov, M.E., Formation, phase, and elemental composition of micro- and nano-dimensional particles of the Fe–Ti system, Russ. J. Phys. Chem. A, 2018, vol. 92, no. 5, pp. 905–908. https://doi.org/10.1134/S0036024418050096

    Article  CAS  Google Scholar 

  13. Dresvyannikov, A.F. and Kolpakov, M.E., Pseudo-topochemical synthesis of iron(0) in aqueous solution containing dispersed titanium, Russ. J. Gen. Chem., 2017, vol. 87, no. 5, pp. 1095–1096. https://doi.org/10.1134/S1070363217050346

    Article  CAS  Google Scholar 

  14. McCafferty, E. and Wightman, J.P., An x-ray photoelectron spectroscopy sputter profile study of the native air-formed oxide film on titanium, Appl. Surf. Sci., 1999, vol. 143, nos. 1–4, pp. 92–100. https://doi.org/10.1016/S0169-4332(98)00927-1

    Article  CAS  Google Scholar 

  15. Park, H. and Choi, W., Effects of TiO2 surface fluorination on photocatalytic reactions and photoelectrochemical behaviors, J. Phys. Chem. B, 2004, vol. 108, no. 13, pp. 4086–4093. https://doi.org/10.1021/jp036735i

    Article  CAS  Google Scholar 

  16. Jiang, Z., Dai, X., Norby, T., and Middleton, H., Investigation of pitting resistance of titanium based on a modified point defect model, Corros. Sci., 2011, vol. 53, no. 2, pp. 815–821. https://doi.org/10.1016/j.corsci.2010.11.015

    Article  CAS  Google Scholar 

  17. Wang, Z.B., Hu, H.X., and Zheng, Y.G., Determination and explanation of the pH-related critical fluoride concentration of pure titanium in acidic solutions using electrochemical methods, Electrochim. Acta, 2015, vol. 170, no. 10, pp. 300–310. https://doi.org/10.1016/j.electacta.2015.04.165

    Article  CAS  Google Scholar 

  18. Dresvyannikov, A.F., Kolpakov, M.E., and Ermolaeva, E.A., Formation of a disperse Fe–Al–Cr system in aqueous solutions and its physical properties, Inorg. Mater., 2016, vol. 52, no. 1, pp. 17–22. https://doi.org/10.1134/S0020168516010052

    Article  CAS  Google Scholar 

  19. He, X., Noel, J.J., and Shoesmith, D.W., Temperature dependence of crevice corrosion initiation on titanium grade-2, J. Electrochem. Soc., 2002, vol. 149, no. 9, pp. B440–B449. https://doi.org/10.1149/1.1499501

    Article  CAS  Google Scholar 

  20. Fasmin, F., Praveen, B.V.S., and Ramanathanz, S., A kinetic model for the anodic dissolution of Ti in HF in the active and passive regions, J. Electrochem. Soc., 2015, vol. 162, no. 9, pp. H604–H610. https://doi.org/10.1149/2.0251509jes

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

In this work, we used equipment at the Nanomaterials and Nanotechnologies Shared Research Facilities Center, Kazan National Research Technological University federal state budget funded educational institution of higher education.

Funding

This research was supported by the Russian Science Foundation, project no. 17-13-01274.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. F. Dresvyannikov.

Additional information

Translated by O. Tsarev

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dresvyannikov, A.F., Kolpakov, M.E. & Ermolaeva, E.A. Deposition of Iron on the Surface of Titanium Microparticles. Inorg Mater 56, 249–253 (2020). https://doi.org/10.1134/S0020168520030012

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0020168520030012

Keywords:

Navigation