Skip to main content
Log in

Structural Transformations of TiO2 during Mechanical Activation and Subsequent Annealing

  • Published:
Inorganic Materials Aims and scope

Abstract

The metastable structure state of the anatase phase of titanium dioxide has been shown to be a favorable basis for a targeted influence on it with the aim of producing new oxide phases consisting of nanoparticles and, accordingly, having a new combination of properties. Mechanical activation and subsequent annealing of the activated powders result in a sequence of phase transformations (anatase–brookite–rutile), thereby ensuring structural ordering of titanium dioxide. Transformations of the titanium oxide phases have been studied in detail by X-ray diffraction. We have evaluated the crystallite (coherent scattering domain) size and internal strain (ε) from diffraction line broadening by profile fitting with the pseudo-Voigt function. The average particle size was 20 nm after mechanical activation, whereas heat treatment increased it by almost a factor of 2. Similar results have been obtained for internal strain. The pore system of the particles is formed by mesopores. The hysteresis loop observed in nitrogen sorption–desorption isotherms suggests that the titanium dioxide particles have platelike morphology. The results obtained in this study have been used to develop innovative technology of a special grade of titanium dioxide for the preparation of thermally stable glues with dielectric properties and high tensile and shear strength.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. Guoma, P.I. and Mills, M.J., Anatase-to-rutile transformation in titania powders, J. Am. Ceram. Soc., 2001, vol. 84, no. 3, pp. 619–622. https://doi.org/10.1111/j.1151-2916.2001.tb00709

    Article  Google Scholar 

  2. Salari, M., Rezaee, M., Mousavikoie, S.M., Marashi, P., and Aboutalebi, H., Effect of milling time on mechanochemical synthesis of TiO2 nanoparticles, Int. J. Mod. Phys. B, 2008, vol. 22, no. 18, pp. 2955–2961. https://doi.org/10.1142/S0217979208047808

    Article  CAS  Google Scholar 

  3. Muscat, J., Swamy, V., and Harrison, N.M., First-principles calculations of the phase stability of TiO2, Phys. Rev. B: Condens. Matter Mater. Phys., 2002, vol. 65, paper 224 112. https://doi.org/10.1103/PhysRevB.65.224112

  4. Zhang, H. and Banfield, J.F., Thermodynamic analysis of phase stability of nanocrystalline titania, J. Mater. Chem., 1998, vol. 8, no. 9, pp. 2073–2076. https://doi.org/10.1039/A802619J

    Article  CAS  Google Scholar 

  5. Lu, H.M., Zhang, W.X., and Jiang, Q., Phase stability of nanoanatase, Adv. Eng. Mater., 2003, vol. 5, no. 11, pp. 787–788. https://doi.org/10.1002/adem.200300359

    Article  CAS  Google Scholar 

  6. Zhang, H. and Banfield, J.F., Understanding polymorphic phase transformation behavior during growth of nanocrystalline aggregates: insights from TiO2, J. Phys. Chem. B, 2000, vol. 104, no. 15, pp. 3481–3487. https://doi.org/10.1021/jp000499j

    Article  CAS  Google Scholar 

  7. Cheng, P., Zheng, M., Jin, Y., Huang, Q., and Gu, M., Preparation and characterization of silica-doped titania photocatalyst through sol–gel method, Mater. Lett., 2003, vol. 57, no. 20, pp. 2989–2994. https://doi.org/10.1016/S0167-577X(02)01409-X

    Article  CAS  Google Scholar 

  8. Li, Y., White, T.J., and Lim, S.H., Low-temperature synthesis and microstructural control of titania nanoparticles, J. Solid State Chem., 2004, vol. 177, nos. 4–5, pp. 1372–1381. https://doi.org/10.1016/j.jssc.2003.11.016

    Article  CAS  Google Scholar 

  9. Li, G.L. and Wang, G.H., Synthesis of nanometer-sized TiO2 particles by a microemulsion method, Nanostruct. Mater., 1999, vol. 11, no. 5, pp. 663–668. https://doi.org/10.1016/s0965-9773(99)00354-2

    Article  CAS  Google Scholar 

  10. Tavangarian, F. and Emadi, R., Mechanochemical synthesis of single phase nanocrystalline forsterite powder, Int. J. Mod. Phys. B, 2010, vol. 24, no. 3, pp. 343–350. https://doi.org/10.1142/S0217979210053987

    Article  CAS  Google Scholar 

  11. Raiender, G. and Giri, P.K., Strain induced phase formation, microstructural evolution and bandgap narrowing in strained TiO2 nanocrystals grown by ball milling, J. Alloys Compd., 2016, vol. 676, pp. 591–600. https://doi.org/10.1016/j.jallcom.2016.03.154

    Article  CAS  Google Scholar 

  12. Gerasimova, L.G., Maslova, M.V., and Shchukina, E.S., The technology of sphene concentrate treatment to obtain titanium salts, Theor. Found. Chem. Eng., 2009, vol. 43, no. 4, pp. 464–467.

    Article  CAS  Google Scholar 

  13. Rietveld, H., A profile refinement method for nuclear and magnetic structures, J. Appl. Crystallogr., 1969, vol. 2, no. 2, pp. 65–71.

    Article  CAS  Google Scholar 

  14. Kozhevnikova, N.S., Kurlov, A.S., Uritskaya, A.A., and Rempel, A.A., Diffraction analysis of nanocrystalline particle size of lead and cadmium sulfides prepared by chemical deposition from aqueous solutions, J. Struct. Chem., 2004, vol. 45, no. 1, pp. S154–S159.

    Article  CAS  Google Scholar 

  15. Kurlov, A.S. and Gusev, A.I., Determination of the particle sizes, microstrains, and degree of inhomogeneity in nanostructured materials from X-ray diffraction data, Glass. Phys. Chem., 2007, vol. 33, no. 3, pp. 276–282.

    Article  CAS  Google Scholar 

  16. Valeeva, A.A., Petrovykh, K.A., Schroettner, Kh., and Rempel, A.A., Effect of stoichiometry on the size of titanium monoxide nanoparticles produced by fragmentation, Inorg. Mater., 2015, vol. 51, no. 11, pp. 1132–1137.

    Article  CAS  Google Scholar 

  17. Williamson, G.K. and Hall, W.H., X-ray line broadening from filed aluminium and wolfram, Acta Metall., 1953, vol. 1, no. 1, pp. 22–31.

    Article  CAS  Google Scholar 

  18. Mingming Wei, Li Zhang, Yongqiang Xiong, Jinhua Li, and Ping’an Peng, Nanopore structure characterization for organic-rich shale using the non-local-density functional theory by a combination of N2 and CO2 adsorption, Microporous Mesoporous Mater., 2016, vol. 227, pp. 88–94. https://doi.org/10.1016/j.micromeso.2016.02.050

    Article  CAS  Google Scholar 

  19. Kurlov, A.S. and Gusev, A.I., Effect of ball milling parameters on the particle size in nanocrystalline powders, Tech. Phys. Lett., 2007, vol. 33, no. 10, pp. 828–832.

    Article  CAS  Google Scholar 

  20. Lowell, S., Shields, J.E., Thomas, M.A., and Thommes, M., Characterization of Porous Solids and Powders: Surface Area, Pore Size and Density, Dordrecht: Kluwer, 2004.

    Book  Google Scholar 

  21. Brunauer, S., Emmett, P.H., and Teller, E., Adsorption of gases in multimolecular layers, J. Am. Chem. Soc., 1938, vol. 60, no. 2, pp. 309–319.

    Article  CAS  Google Scholar 

  22. Thommes, M., Kaneko, K., Neimark, A.V., Olivier, J.P., Rodriguez-Reinoso, F., Rouquerol, J., and Sing, K.S.W., Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC technical report), Pure Appl. Chem., 2015, vol. 87, nos. 9–10, pp. 1051–1069. https://doi.org/10.1515/pac-2014-1117

    Article  CAS  Google Scholar 

  23. Vyacheslavov, A.S. and Efremova, M., Opredelenie ploshchadi poverkhnosti i poristosti materialov metodom sorbtsii gazov (Metodicheskaya razrabotka) (Determination of the Specific Surface Area and Porosity of Materials by Gas Sorption Measurements: A Methodological Guidance), Moscow: Mosk. Gos. Univ., 2011.

  24. Kuz’mich, Yu.V. and Gerasimova, L.G., Effect of grinding media on the anatase-to-rutile phase transformation, Tr. Kol’sk. Nauchn. Tsentra Ross. Akad. Nauk, 2018, part 1, pp. 315–318.

  25. Gerasimova, L.G., Kuz’mich, Yu.V., Nikolaev, A.I., Shchukina, E.S., and Kiselev, Yu.G., RF Patent 2 613 509, Byull. Izobret., 2017, no. 8.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. G. Gerasimova.

Additional information

Translated by O. Tsarev

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kuz’mich, Y.V., Gerasimova, L.G. & Shchukina, E.S. Structural Transformations of TiO2 during Mechanical Activation and Subsequent Annealing. Inorg Mater 56, 156–163 (2020). https://doi.org/10.1134/S0020168520020090

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0020168520020090

Keywords:

Navigation