Skip to main content
Log in

High-Energy Mechanical Processing-Induced Structural Changes in Ti + Ni Powder Mixtures

  • Published:
Inorganic Materials Aims and scope

Abstract—

A Ti + Ni powder mixture has been subjected to high-energy mechanical processing (HEMP) and then characterized by X-ray diffraction. The results demonstrate that, with increasing milling time, the crystallite size of both titanium and nickel drops to 10 nm. The internal stress rises with increasing HEMP time, reaching a level near the yield stress of the metals studied. HEMP in the Ti–Ni system leads to the formation of an essentially amorphous material after 40 min of milling time processing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Gyunter, V.E., Itin, V.I., Monasevich, L.A., et al., Effekty pamyati form i ikh primenenie v meditsine (Shape Memory Effects and Their Medical Applications), Novosibirsk: Nauka, 1992.

  2. Gyunter, V.E., Kotenko, V.V., Mirgazizov, M.Z., et al., Splavy s pamyat’yu formy v meditsine (Medical Applications of Shape Memory Alloys), Tomsk: Tomsk. Gos. Univ., 1986.

  3. Tikhonov, A.S., Gerasimov, A.P., and Prokhorova, I.I., Primenenie effekta pamyati formy v sovremennom mashinostroenii (Application of the Shape Memory Effect in Advanced Mechanical Engineering), Moscow: Mashinostroenie, 1981.

  4. Rogachev, A.S. and Mukasyan, A.S., Gorenie dlya sinteza materialov (Materials Synthesis via Combustion), Moscow: Fizmatlit, 2012.

  5. Merzhanov, A.G. and Mukasyan, A.S., Tverdoplamennoe gorenie (Solid-State Combustion), Moscow: Torus, 2007.

  6. Zenin, A.A., Merzhanov, A.G., and Nersisyan, G.A., Thermal wave structure in SHS processes, Combust., Explos., Shock Waves, 1981, vol. 17, no. 1, pp. 63–71. https://doi.org/10.1007/BF00772787

    Article  Google Scholar 

  7. Itin, V.I. and Naiorodenko, Yu.S., Vysokotemperaturnyi sintez intermetallicheskikh soedinenii (High-Temperature Synthesis of Intermetallic Compounds), Tomsk: Tomsk. Gos. Univ., 1989.

  8. Itin, V.I., Monasevich, T.V., and Bratchikov, A.D., Effect of mechanical activation on the regularities of self-propagating high-temperature synthesis in the titanium–nickel system, Combust., Explos., Shock Waves, 1997, vol. 33, no. 5, pp. 553–555. https://doi.org/10.1007/BF02672741

    Article  Google Scholar 

  9. Korchagin, M.A., Grigor’eva, T.F., Bokhonov, B.B., Sharafutdinov, M.R., Barinova, A.P., and Lyakhov, N.Z., Solid-state combustion in mechanically activated SHS systems: I. Effect of activation time on process parameters and combustion product composition, Combust., Explos., Shock Waves, 2003, vol. 39, no. 1, pp. 43–50. https://doi.org/10.1023/A:1022145201911

    Article  Google Scholar 

  10. Korchagin, M.A., Grigor’eva, T.F., Bokhonov, B.B., Sharafutdinov, M.R., Barinova, A.P., and Lyakhov, N.Z., Solid-state combustion in mechanically activated SHS systems: II. Effect of mechanical activation conditions on process parameters and combustion product composition, Combust., Explos., Shock Waves, 2003, vol. 39, no. 1, pp. 51–58. https://doi.org/10.1023/A:1022197218749

    Article  CAS  Google Scholar 

  11. Dymchenko, N.P., Shishlyannikova, L.M., and Yaroslavtseva, N.N., Application of computers in calculations of the fine crystal structure of polycrystals by the method of second and fourth moments, Appar. Metody Rentgenovskogo Anal., 1974, no. 15, pp. 37–45.

  12. Kovalev, I.D. and Kochetov, N.A., Mechanical activation-induced structural changes in a 5Ti + 3Si mixture, Inorg. Mater., 2017, vol. 53, no. 4, pp. 447–450.

    Article  CAS  Google Scholar 

  13. Kovalev, D.Yu., Kochetov, N.A., and Ponomarev, V.I., Criteria of the critical state of the Ni-Al system during mechanical activation, Combust., Explos., Shock Waves, 2010, vol. 46, no. 4, pp. 457–463. https://doi.org/10.1007/s10573-010-0060-2

    Article  Google Scholar 

  14. Kochetov, N.A. and Kovalev, I.D., Mechanical activation of Ti–2B system: XRD investigation of structural features, Eurasian Chem.-Technol. J., 2016, vol. 18, no. 2, pp. 149–152.

    CAS  Google Scholar 

  15. Avvakumov, E.G., Fundamental’nye osnovy mekhanicheskoi aktivatsii, mekhanosinteza i mekhanokhimicheskikh tekhnologii (Basic Principles of Mechanical Activation, Mechanosynthesis, and Mechanochemical Processing), Novosibirsk: Sib. Otd. Ross. Akad. Nauk, 2009.

  16. Rogachev, A.S., Kuskov, K.V., Shkodich, N.F., Moskovskikh, D.O., Orlov, A.O., Usenko, A.A., Karpov, A.V., Kovalev, I.D., and Mukasyan, A.S., Influence of high-energy ball milling on electrical resistance of Cu and Cu/Cr nanocomposite materials produced by spark plasma sintering, J. Alloys Compd., 2016, vol. 688, pp. 468–474.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. D. Kovalev.

Additional information

Translated by O. Tsarev

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kovalev, I.D., Kochetov, N.A. High-Energy Mechanical Processing-Induced Structural Changes in Ti + Ni Powder Mixtures. Inorg Mater 56, 132–135 (2020). https://doi.org/10.1134/S0020168520020077

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0020168520020077

Keywords:

Navigation