Skip to main content
Log in

Synthesis and High-Temperature Heat Capacity of the YbInGe2O7 and LuInGe2O7 Germanates in the Range 350—1000 K

  • Published:
Inorganic Materials Aims and scope

Abstract

The YbInGe2O7 and LuInGe2O7 germanates have been prepared by solid-state reactions using stoichiometric oxide mixtures, which were sequentially fired at temperatures from 1273 to 1473 K in air, and their molar heat capacity has been determined by differential scanning calorimetry in the range 350‒1000 K. The experimental Cp(T) data obtained have been used to evaluate the enthalpy increment, entropy change, and reduced Gibbs energy of the rare-earth oxide compounds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Chang, Y.-S., Lin, H.-J., Chao, Y.-L., et al., Preparation and luminescent properties of europium-activated YInGe2O7 phosphors, J. Alloys Compd., 2008, vol. 460, pp. 421‒425. https://doi.org/10.1016/j.jallcom.2007.05.060

    Article  CAS  Google Scholar 

  2. Juarez-Arellano, E.A., Rosales, I., Oliver, A., et al., In1.06Ho0.94Ge2O7: a thortveitite-type compound, Acta Crystallogr., Sect. C: Cryst. Struct. Commun., 2004, vol. 60, pp. i14‒i16. https://doi.org/10.1107/S0108270103029056

    Article  Google Scholar 

  3. Juarez-Arellano, E.A., Compa-Molina, J., Ulloa-Godinez, S., et al., Crystallochemistry of thortveitite-like and thortveitite-type compounds, Mater. Res. Soc. Symp. Proc., 2005, vol. 848, pp. FF6.15.1‒FF6.15.8.

  4. Bucio, L., Ruvalcaba-Sil, J.L., Garcia-Robledo, J., et al., The crystal structure of FeInGe2O7, Z. Kristallogr., 2001, vol. 216, pp. 438‒441.

    CAS  Google Scholar 

  5. Kaminskii, A.A., Mill, B.V., Butashin, A.V., et al., NdAlGe2O7-type structure, Phys. Status Solidi A, 1987, vol. 103, pp. 575‒592.

    Article  CAS  Google Scholar 

  6. Juarez-Arellano, E.A., Bucio, L., Ruvalcaba, J.L., et al., The crystal structure of InYGe2O7 germanate, Z. Kristallogr., 2002, vol. 217, pp. 201‒204.

    CAS  Google Scholar 

  7. Jarchow, O., Klaska, K.-H., and Schenk-Strauß, H., Die Kristallstrukturen von NdAlGe2O7 und NdGaGe2O7, Z. Kristallogr., 1985, vol. 172, pp. 159‒166.

    Article  CAS  Google Scholar 

  8. Juarez-Arellano, E.-A., Rosales, I., Bucio, L., and Orozco, E., In1.08Gd0.92Ge2O7: a new member of the thortveitite family, Acta Crystallogr., Sect. C: Cryst. Struct. Commun., 2002, vol. 58, pp. i135‒i137.

    Article  Google Scholar 

  9. Bucio, L., Cascales, C., Alonso, J.A., et al., Structural characterization by neutron diffraction of FeRGe2O7, R = La, Pr, Mater. Sci. Forum Switzerland, 1996, vols. 228‒231, pp. 735‒740.

    Article  Google Scholar 

  10. Mill’, B.V., Kazei, Z.A., Reiman, S.I., et al., Magnetic and Mössbauer characterization of the new antiferromagnetic compounds RFeGe2O7 (R = La‒Gd), Vestn. Mosk. Univ.,Ser. Fiz. Astronom., 1987, vol. 28, no. 4, pp. 95‒98.

    Google Scholar 

  11. Bucio, L., Cascales, C., Alonso, J.A., et al., Neutron diffraction refinement and characterization of FeRGe2O7 (R = La, Pr, Nd, Gd), J. Phys.: Condens. Matter, 1996, vol. 8, pp. 2641‒2653.

    CAS  Google Scholar 

  12. Baran, E.J., Cascales, C., and Marcader, R.C., Vibrational and 57Fe-Mössbauer spectra of FeTbGe2O7, Spectrochim. Acta A, 2000, vol. 56, pp. 1277‒1281.

    Article  Google Scholar 

  13. Cascales, C., Gutierrez Puebla, E., Klimin, S., et al., Magnetic ordering in the rare earth iron germanates HoFeGe2O7 and ErFeGe2O7, Chem. Mater., 1999, vol. 11, pp. 2520‒2526.

    Article  CAS  Google Scholar 

  14. Cascales, C., Fernandez-Diaz, M.T., Monge, M.A., et al., Crystal structure and low-temperature magnetic ordering in rare earth iron germanates RFeGe2O7, R = Y, Pr, Dy, Tm, and Yb, Chem. Mater., 2002, vol. 14, pp. 1995‒2003. https://doi.org/10.1021/cm0111332

    Article  CAS  Google Scholar 

  15. Denisova, L.T., Kargin, Yu.F., Irtyugo, L.A., et al., Heat capacity of In2Ge2O7 and YInGe2O7 from 320 to 1000 K, Inorg. Mater., 2018, vol. 54, no. 12, pp. 1245‒1249. https://doi.org/10.1134/S0020168518120026

    Article  CAS  Google Scholar 

  16. Denisova, L.T., Irtyugo, L.A., Belousova, N.V., et al., High temperature heat capacity and thermodynamic properties of Tm2Ge2O7 and TmInGe2O7 in the region of 350‒1000 K, Russ. J. Phys. Chem. A, 2019, vol. 93, no. 3, pp. 598‒601. https://doi.org/10.1134/S003602441903004X

    Article  CAS  Google Scholar 

  17. Denisova, L.T., Chumilina, L.G., Belousova, N.V., et al., High-temperature heat capacity of CdO‒V2O5 oxides, Phys. Solid State, 2017, vol. 59, no. 12, pp. 2519‒2523. https://doi.org/10.1134/S1063783417120344

    Article  CAS  Google Scholar 

  18. Denisova, L.T., Irtyugo, L.A., Kargin, Yu.F., et al., High-temperature heat capacity and thermodynamic properties of Tb2Sn2O7, Inorg. Mater., 2017, vol. 53, no. 1, pp. 93‒95. https://doi.org/10.1134/S0020168517010046

    Article  CAS  Google Scholar 

  19. Shannon, R.D., Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides, Acta Crystallogr., Sect. A: Cryst. Phys., Diffr., Theor. Gen. Crystallogr., 1976, vol. 32, no. 5, pp. 751‒767.

    Article  Google Scholar 

  20. Kawabe, I., Lanthanide tetrad effect in the Ln3+ ionic radii and refined spinpairing energy theory, Geochem. J., 1992, vol. 26, pp. 309‒335.

    Article  CAS  Google Scholar 

  21. Yasnygina, T.A. and Rasskazov, S.V., Tetrad effect in rare earth element distribution patterns: evidence from Paleozoic granitoids of the Oka zone, Eastern Sayan, Geochem. Int., 2008, no. 8, pp. 814‒825.

  22. Tret’yakov, Yu.D., Martynenko, L.I., Grigor’ev, A.N., et al., Neorganicheskaya khimiya (Inorganic Chemistry), Moscow: Khimiya, 2001, vol. 1.

  23. Denisova, L.T., Kargin, Yu.F., and Denisov, V.M., Heat capacity of rare-earth cuprates, orthovanadates, and aluminum garnets, gallium garnets, and iron garnets, Phys. Solid State, 2015, vol. 57, no. 8, pp. 1699‒1703. https://doi.org/10.1134/S1063783415080065

    Article  CAS  Google Scholar 

  24. Leitner, J., Chuchvalec, P., Sedmidubský, D., et al., Estimation of heat capacities of solid mixed oxides, Thermochim. Acta, 2003, vol. 395, nos. 1‒2, pp. 27‒46.

    Article  CAS  Google Scholar 

  25. Gordienko, S.P., Fenochka, B.V., and Viksman, G.Sh., Termodinamika soedinenii lantanoidov (Thermodynamics of Lanthanide Compounds), Kiev: Naukova Dumka, 1979.

Download references

Funding

This work was supported by the Russian Federation Ministry of Science and Higher Education (state research target for Siberian Federal University in 2017‒2019, project no. 4.8083.2017/8.9: Establishing a Database of Thermodynamic Characteristics of Multifunctional Mixed-Oxide Materials Containing Rare and Trace Elements).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. T. Denisova.

Additional information

Translated by O. Tsarev

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Denisova, L.T., Irtyugo, L.A., Kargin, Y.F. et al. Synthesis and High-Temperature Heat Capacity of the YbInGe2O7 and LuInGe2O7 Germanates in the Range 350—1000 K. Inorg Mater 56, 151–155 (2020). https://doi.org/10.1134/S0020168520020041

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0020168520020041

Keywords:

Navigation