Skip to main content
Log in

New Mineral-Like Gd- and B-Containing Compounds for Neutron Capture Therapy

  • Published:
Inorganic Materials Aims and scope

Abstract

New Gd- and B-containing compounds, Y3 –xGdxAl2(AlO4)3 – 0.01x(BO4)0.01x with the garnet structure and Y1 –xGdx(AlO3)1 – 0.01x(BO3)0.01x with the perovskite structure, have been synthesized in the range x = 0.2–1.0 via coprecipitation method and characterized by X-ray diffraction and IR spectroscopy. The formation of a continuous series of solid solutions with the expected garnet structure has been demonstrated. We failed to obtain compounds with the perovskite structure. Assessment of the cytotoxicity of the synthesized compounds with the garnet structure has shown that they have no significant effect on blood cell viability in experimental animals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. Hawthorne, M.F. and Lee, M., A critical assessment of boron target compounds for boron neutron capture therapy, J. Neurooncol., 2003, vol. 62, nos. 1–2, pp. 33–37. https://doi.org/10.1023/A:1023253309343

    Article  PubMed  Google Scholar 

  2. Hosmane, N.S., Maguire, J.A., Zhu, Y., and Takagaki, M., Principles of neutron capture therapy, in Boron and Gadolinium Neutron Capture Therapy for Cancer Treatment, Singapore: World Scientific, 2012, p. 35. https://doi.org/10.1142/9789814338684_0003

  3. Barth, R.F., Coderre, J.A., Vicente, M.G.H., and Blue, T.E., Boron neutron capture therapy of cancer: current status and future prospects, Clin. Cancer Res., 2005, vol. 11, no. 11, pp. 3987–3992. https://doi.org/10.1158/1078-0432.CCR-05-0035

    Article  CAS  PubMed  Google Scholar 

  4. Kageji, T., Nagahiro, S., Mizobuchi, Y., et al., Boron neutron capture therapy (BNCT) for newly diagnosed glioblastoma: comparison of clinical results obtained with BNCT and conventional treatment, J. Med. Invest., 2014, vol. 61, nos. 3–4, pp. 254–262. https://doi.org/10.2152/jmi.61.254

    Article  PubMed  Google Scholar 

  5. Van Rij, C.M., Wilhelm, A.J., Sauerwein, W.A., and van Loenen, A.C., Boron neutron capture therapy for glioblastoma multiforme, Pharm. World Sci., 2005, vol. 27, no. 2, pp. 92–96. https://doi.org/10.2217/fon.12.118

    Article  CAS  PubMed  Google Scholar 

  6. Liu, Y.W., Chang, C.T., Yeh, L.Y., et al., BNCT treatment planning for superficial and deep-seated tumors: experience from clinical trial of recurrent head and neck cancer at THOR, Appl. Radiat. Isot., 2015, vol. 106, pp. 121–126. https://doi.org/10.1016/j.apradiso.2015.08.002

    Article  CAS  PubMed  Google Scholar 

  7. Aihara, T., Morita, N., Kamitani, N., et al., BNCT for advanced or recurrent head and neck cancer, Appl. Radiat. Isot., 2014, vol. 88, pp. 12–17. https://doi.org/10.1016/j.apradiso.2014.04.007

    Article  CAS  PubMed  Google Scholar 

  8. Menéndez, P.R., Roth, B.M., Pereira, M.D., et al., BNCT for skin melanoma in extremities: updated Argentine clinical results, Appl. Radiat. Isot., 2009, vol. 67, pp. S50–S55. https://doi.org/10.1016/j.apradiso.2009.03.020

    Article  CAS  PubMed  Google Scholar 

  9. Zonta, A., Prati, U., Roveda, L., et al., Clinical lessons from the first applications of BNCT on unresectable liver metastases, J. Phys: Conf. Ser., 2006, vol. 41, pp. 484–489. https://doi.org/10.1088/1742-6596/41/1/054

    Article  CAS  Google Scholar 

  10. Barth, R.F., Vicente, M.G., Harling, O.K., et al., Current status of boron neutron capture therapy of high grade gliomas and recurrent head and neck cancer, Radiat. Oncol., 2012, vol. 7, pp. 146–151. https://doi.org/10.1186/1748-717X-7-146

    Article  PubMed  PubMed Central  Google Scholar 

  11. Luderer, M.J., de la Puente, P., and Azab, A.K., Advancements in tumor targeting strategies for boron neutron capture therapy, Pharm. Res., 2015, vol. 32, no. 9, pp. 2824–2830. https://doi.org/10.1007/s11095-015-1718-y

    Article  CAS  PubMed  Google Scholar 

  12. Salt, C., Lennox, A.J., Takagaki, M., et al., Boron and gadolinium neutron capture therapy, Russ. Chem. Bull.,Int. Ed., 2004, vol. 53, pp. 1871–1878. https://doi.org/10.1007/s11172-005-0045-6

    Article  CAS  Google Scholar 

  13. Brugger, R.M. and Shih, J.A., Evaluation of gadolinium-157 as a neutron capture therapy agent, Strahlenther. Onkol., 1989, vol. 165, nos. 2–3, pp. 153–158.

    CAS  PubMed  Google Scholar 

  14. De Stasio, G., Casalbore, P., Pallini, R., et al., Gadolinium in human glioblastoma cells for gadolinium neutron capture therapy, Cancer Res., 2001, vol. 61, no. 10, pp. 4272–4277.

    CAS  PubMed  Google Scholar 

  15. Shih, J.L.A. and Brugger, R.M., Gadolinium as a neutron capture therapy agent, Med. Phys., 1992, vol. 19, no. 3, pp 733–738. https://doi.org/10.1118/1.596817

    Article  CAS  PubMed  Google Scholar 

  16. Golovkina, L.S., Orlova, A.I., Nokhrin, A.V., et al., Ceramics based on yttrium aluminum garnet containing Nd and Sm obtained by spark plasma sintering, Adv. Ceram. Sci. Eng., 2013, vol. 2, no. 4, pp. 161–165.

    Google Scholar 

  17. Potanina, E., Golovkina, L., Orlova, A., et al., Lanthanide (Nd, Gd) compounds with garnet and monazite structures. Powders synthesis by “wet” chemistry to sintering ceramics by spark plasma sintering, J. Nucl. Mater., 2016, vol. 473, pp. 93–99. https://doi.org/10.1016/j.jnucmat.2016.02.014

    Article  CAS  Google Scholar 

  18. Laverov, N.P., Velichkin, V.I., Omel’yanenko, B.I., et al., Izmenenie okruzhayushchei sredy i klimata: prirodnye i svyazannye s nimi tekhnogennye katastrofy (Environment and Climate Changes: Natural and Related Industrial Disasters), vol. 5: Izolyatsiya otrabotavshikh yadernykh materialov: geologo-geokhimicheskie osnovy (Isolation of Spent Nuclear Materials: Geological and Geochemical Principles), Moscow: Inst. Geologii Rudnykh Mestorozhdenii, Petrografii, Mineralogii i Geokhimii (IGEM), Ross. Akad. Nauk, 2008.

  19. Pena, M.A. and Fierro, J.L.G., Chemical structures and performance of perovskite oxides, Chem. Rev., 2001, vol. 101, pp. 1981–2018. https://doi.org/10.1021/cr980129f

    Article  CAS  PubMed  Google Scholar 

  20. Davies, R.A., Islam, M.S., Chadwick, A.V., and Rush, G.E., Cation dopant sites in the CaZrO3 proton conductor: a combined EXAFS and computer simulation study, Solid State Ionics, 2000, vol. 130, no. 2, pp. 115–121. https://doi.org/10.1016/S0167-2738(00)00573-7

    Article  CAS  Google Scholar 

  21. Davies, R.A., Islam, M.S., and Gale, J.D., Dopant and proton incorporation in perovskite-type zirconates, Solid State Ionics, 1999, vol. 126, no. 4, pp. 323–329. https://doi.org/10.1016/S0167-2738(99)00244-1

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the Russian Foundation for Basic Research, grant no. 18-33-00880.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. S. Alekseeva.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alekseeva, L.S., Pushkova, D.A., Gorshkov, A.P. et al. New Mineral-Like Gd- and B-Containing Compounds for Neutron Capture Therapy. Inorg Mater 56, 198–203 (2020). https://doi.org/10.1134/S0020168520020016

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0020168520020016

Keywords:

Navigation