Skip to main content
Log in

Heat Capacity and Thermodynamic Functions of La2Sn2O7

  • Published:
Inorganic Materials Aims and scope

Abstract

Lanthanum stannate with the pyrochlore structure and a crystallite size in the range 100–400 nm has been prepared by solid-state synthesis. We have optimized synthesis parameters for obtaining a ceramic material. The heat capacity of La2Sn2O7 has been determined for the first time using adiabatic and differential scanning calorimetry techniques in the range 19–1300 K, and the stannate has been shown to undergo no structural transitions in this range. We have calculated temperature-dependent standard thermodynamic functions of La2Sn2O7 and evaluated the standard Gibbs energy of formation of this compound from its constituent elements at 298.15 K.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Kennedy, B.J., Hunter, B.A., and Howard, C.J., Structural and bonding trends in tin pyrochlore oxides, J. Solid State Chem., 1997, vol. 130, pp. 58–65.https://doi.org/10.1006/jssc.1997.7277

    Article  CAS  Google Scholar 

  2. Brisse, F. and Knop, O., Pyrochlores. III. X-ray, neutron, infrared, and dielectric studies of A2Sn2O7 stannates, Can. J. Chem., 1968, vol. 46, no. 6, pp. 859–873.https://doi.org/10.1139/v68-148

    Article  CAS  Google Scholar 

  3. Vandenborre, M.T., Husson, E., Chatry, J.P., and Michel, D., Rare-earth titanates and stannates of pyrochlore structure; vibrational spectra and force fields, J. Raman Spectrosc., 1983, vol. 14, no. 2, pp. 63–71.https://doi.org/10.1002/jrs.1250140202

    Article  CAS  Google Scholar 

  4. Coles, G.S.V., Bond, S.E., and Williams, G., Metal stannates and their role as potential gas-sensing elements, J. Mater. Chem., 1994, vol. 4, no. 1, pp. 23–27.https://doi.org/10.1039/jm9940400023

    Article  CAS  Google Scholar 

  5. Wang, W., Liang, S., Bi, J., Yu, J.C., Wong, P.K., and Wua, L., Lanthanide stannate pyrochlores Ln2Sn2O7 (Ln = Nd, Sm, Eu, Gd, Er, Yb) nanocrystals: synthesis, characterization, and photocatalytic properties, Mater. Res. Bull., 2014, vol. 56, pp. 86–91.https://doi.org/10.1016/j.materresbull.2014.01.048

    Article  CAS  Google Scholar 

  6. Ewing, R.C., Weber, W.J., and Lian, J., Nuclear waste disposal—pyrochlore (A2B2O7): nuclear waste form for the immobilization of plutonium and ‘minor’ actinides, J. Appl. Phys., 2004, vol. 95, no. 11, pp. 5949–5971.https://doi.org/10.1063/1.1707213

    Article  CAS  Google Scholar 

  7. Lang, M., Zhang, F., Zhang, J., Wang, J., Lian, J., Weber, W.J., Schuster, B., Trautmann, C., Neumann, R., and Ewing, R.C., Review of A2B2O7 pyrochlore response to irradiation and pressure, Nucl. Instrum. Methods Phys. Res.,Sect. B, 2010, vol. 268, pp. 2951–2959.https://doi.org/10.1016/j.nimb.2010.05.016

    Article  CAS  Google Scholar 

  8. Zhao, M., Ren, X., Yang, J., and Pan, W., Low thermal conductivity of rare-earth zirconate–stannate solid solutions (Yb2Zr2O7)1 –x(Ln2Sn2O7)x (Ln = Nd, Sm), J. Am. Ceram. Soc., 2016, vol. 99, pp. 293–299.https://doi.org/10.1111/jace.13979

    Article  CAS  Google Scholar 

  9. Wang, J., Xu, F., Wheatley, R.J., Choy, K.-L., Neate, N., and Hou, X., Investigation of La3+ doped Yb2Sn2O7 as new thermal barrier materials, Mater. Des., 2015, vol. 85, pp. 423–430.https://doi.org/10.1016/j.matdes.2015.07.022

    Article  CAS  Google Scholar 

  10. Lian, J., Helean, K.B., Kennedy, B.J., Wang, L.M., Navrotsky, A., and Ewing, R.C., Effect of structure and thermodynamic stability on the response of lanthanide stannate pyrochlores to ion beam irradiation, J. Phys. Chem. B, 2006, vol. 110, pp. 2343–2350.https://doi.org/10.1021/jp055266c

    Article  CAS  PubMed  Google Scholar 

  11. Denisova, L.T., Kargin, Yu.F., and Denisov, V.M., Heat capacity of rare-earth stannates in the range 350–1000 K, Inorg. Mater., 2017, vol. 53, no. 9, pp. 956–961.https://doi.org/10.1134/S0020168517090059

    Article  CAS  Google Scholar 

  12. Feng, J., Xiao, B., Zhou, R., and Pan, W., Thermal expansion and conductivity of RE2Sn2O7 (RE = La, Nd, Sm, Gd, Er and Yb) pyrochlores, Scr. Mater., 2013, vol. 69, no. 5, pp. 401–404.https://doi.org/10.1016/j.scriptamat.2013.05.030

    Article  CAS  Google Scholar 

  13. Bonville, P., Hodges, J.A., Ocio, M., Sanchez, J.P., Vulliet, P., Sosin, S., and Braithwaite, D., Low temperature magnetic properties of geometrically frustrated Gd2Sn2O7 and Gd2Ti2O7, J. Phys.: Condens. Matter, 2003, vol. 15, pp. 7777–7787. https://doi.org/doi:10.1088/0953-8984/15/45/016

    CAS  Google Scholar 

  14. Quilliam, J.A., Ross, K.A., Del Maestro, A.G., Gingras, M.J.P., Corruccini, L.R., and Kycia, J.B., Evidence for gapped spin-wave excitation in the frustrated Gd2Sn2O7 pyrochlore antiferromagnet from low-temperature specific heat measurements, Phys. Rev. Lett., 2007, vol. 99, paper 097 201.https://doi.org/10.1103/PhysRevLett.99.097201

  15. Alam, J., Jana, Y.M., and Biswas, A.Ali, Magnetic ground-state of strongly frustrated pyrochlore anti-ferromagnet Er2Sn2O7, J. Magn. Magn. Mater., 2014, vol. 361, pp. 175–181.https://doi.org/10.1016/j.jmmm.2014.02.086

    Article  CAS  Google Scholar 

  16. Ghamdi, N.Al., Orendačova, A., Pavlik, V., and Orendač, M., Thermodynamic properties of geometrically frustrated S = 1/2XY antiferromagnet Er2Sn2O7, Acta Phys. Pol., A, 2014, vol. 126, no. 1, pp. 264–265.https://doi.org/10.12693/APhysPolA.126.264

    Article  CAS  Google Scholar 

  17. Ditmars, D.A., Ishihara, S., Chang, S.S., Bernstein, G., and West, E.D., Enthalpy and heat-capacity standard reference material: synthetic sapphire (alpha-Al2O3) from 10 to 2250 K, J. Res. Natl. Bur. Stand., 1982, vol. 87, no. 2, pp. 159–163.https://doi.org/10.6028/jres.087.012

    Article  CAS  Google Scholar 

  18. Gurevich, V.M. and Khlyustov, V.G., Calorimeter for determining low-temperature heat capacity of minerals and heat capacity of quartz from 9 to 300 K, Geokhimiya, 1979, no. 6, pp. 829–839.

  19. Maier, C.G. and Kelley, K.K., An equation for the representation of high-temperature heat content data, J. Am. Chem. Soc., 1932, vol. 54, pp. 3243–3246.https://doi.org/10.1021/ja01347a029

    Article  CAS  Google Scholar 

  20. Chen, Z.J., Xiao, H.Y., Zu, X.T., Wang, L.M., Gao, F., Lian, J., and Ewing, R.C., Structural and bonding properties of stannate pyrochlores: a density functional theory investigation, Comput. Mater. Sci., 2008, vol. 42, pp. 653–658.https://doi.org/10.1016/j.commatsci.2007.09.01

  21. Subramanian, M.A., Aravamudan, G., and Subba Rao, G.V., Oxide pyrochlores—a review, Prog. Solid State Chem., 1983, vol. 15, pp. 55–143. https://doi.org/10.1016/0079-6786(83)90001-8

    Article  CAS  Google Scholar 

  22. Kong, L., Karatchevtseva, I., Blackford, M.G., Scales, N., and Triani, G., Aqueous chemical synthesis of Ln2Sn2O7 pyrochlore-structured ceramics, J. Am. Ceram. Soc., 2013, vol. 96, no. 9, pp. 2994–3000.https://doi.org/10.1111/jace.12409

    Article  CAS  Google Scholar 

  23. Whinfreyd, C., Eckar, O., and Tauber, A., Preparation and X-ray diffraction data for some rare earth stannates, J. Am. Chem. Soc., 1960, vol. 82, no. 11, pp. 2695–2697.https://doi.org/10.1021/ja01496a010

    Article  Google Scholar 

  24. Wieser, M.E., Atomic weights of the elements 2005 (IUPAC technical report), Pure Appl. Chem., 2006, vol. 78, no. 11, pp. 2051–2066.https://doi.org/10.1351/pac2006781112051

    Article  CAS  Google Scholar 

  25. Bolech, M., Cordfunke, E.H.P., and van Genderen, A.C.G., The heat capacity and derived thermodynamic functions of La2Zr2O7 and Ce2Zr2O7 from 4 to 1000 K, J. Phys. Chem. Solids, 1997, vol. 58, no. 3, pp. 433–439.https://doi.org/10.1016/S0022-3697(06)00137-5

    Article  CAS  Google Scholar 

  26. Gagarin, P.G., Thermodynamic functions of compounds and solid solutions of lanthanide oxides and zirconium dioxide, Cand. Sci. (Chem.) Dissertation, Moscow: Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, 2018.

  27. Leitner, J., Chuchvalec, P., Sedmidubský, D., Strejc, A., and Abrman, P., Estimation of heat capacities of solid mixed oxides, Thermochim. Acta, 2002, vol. 395, pp. 27–46.https://doi.org/10.1016/S0040-6031(02)00177-6

    Article  Google Scholar 

  28. Leitner, J., Voňka, P., Sedmidubský, D., and Svoboda, P., Application of Neumann–Kopp rule for the estimation of heat capacity of mixed oxides, Thermochim. Acta, 2010, vol. 497, pp. 7–13.https://doi.org/10.1016/j.tca.2009.08.002

    Article  CAS  Google Scholar 

  29. Gurevich, V.M., Gavrichev, K.S., Gorbunov, V.E., Polyakov, V.B., Mineev, S.D., and Golushina, L.N., Thermodynamic properties of cassiterite SnO2(c) at 0–1500 K, Geochem. Int., 2004, vol. 42, no. 10, pp. 962–970.

    Google Scholar 

  30. Konings, R.J.M., Beneš, O., Kovács, A., Manara, D., Sedmidubský, D., Gorokhov, L., Iorish, V.S., Yungman, V., Shenyavskaya, E., and Osina, E., The thermodynamic properties of the f-elements and their compounds. Part 2. The lanthanide and actinide oxides, J. Phys. Chem. Ref. Data, 2014, vol. 43, paper 013 101.https://doi.org/10.1063/1.4825256

  31. Justice, B.H. and Westrum, E.F., Jr., Thermophysical properties of lanthanide oxides. I. Heat capacities, thermodynamic properties and some energy levels of lanthanum(III) and neodymium oxides from 5 to 350 K, J. Phys. Chem., 1963, vol. 67, pp. 339–345.https://doi.org/10.1021/j100796a031

    Article  Google Scholar 

  32. Hultgren, R., Desai, P.R., Hawkins, D.T., Gleiser, M., Kelley, K.K., and Wagman, D.D., Selected Values of the Thermodynamic Properties of the Elements and of the Binary Alloys, Metals Park: Am. Soc. Met., 1973.

    Google Scholar 

  33. Termicheskie konstanty veshchestv: Spravochnik (Thermal Constants of Substances: A Handbook), Glushko, V.P., Ed., Moscow: VINITI, 1965–1982. http://www.chem.msu.ru/cgi-bin/tkv.pl

Download references

Funding

This work was supported by Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences state assignment (Russian Federation Ministry of Science and Higher Education).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Ryumin.

Ethics declarations

This recearch was performed using the equipment of the Joint Research Centre of Physical Methods of Research, Institute of General and Inorganic Chemistry, Russian Academy of Sciences.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ryumin, M.A., Nikiforova, G.E., Tyurin, A.V. et al. Heat Capacity and Thermodynamic Functions of La2Sn2O7. Inorg Mater 56, 97–104 (2020). https://doi.org/10.1134/S0020168520010148

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0020168520010148

Keywords:

Navigation