Skip to main content
Log in

Self-Propagating High-Temperature Synthesis of MgAl2O4 Spinel

  • Published:
Inorganic Materials Aims and scope

Abstract

Magnesium aluminate spinel, MgAl2O4, has been prepared by self-propagating high-temperature synthesis (SHS) in the MgO–Al2O3–Mg(NO3)2 ∙ 6H2O–Al–B system. The composition and structure of the synthesis product have been ascertained by X-ray diffraction, infrared spectroscopy, and scanning electron microscopy. Using time-resolved X-ray diffraction (TRXRD), we have studied the phase formation process during SHS and identified the key reaction paths. The addition of 2–4 wt % boron has been shown to result in the formation of a liquid phase during the combustion process owing to the formation of a low-melting-point boron oxide, favoring the growth of skeletal spinel crystals 1–10 μm in size. Our results demonstrate that the use of a mixture of aluminum and boron as combustible components of the starting mixture and heating at a rate above 100°C/min allow a material containing more than 95 wt % MgAl2O4 spinel to be obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. Khoroshavin, L.B., Shpinelidnye nanoogneupory (Spinel Nanorefractories), Yekaterinburg: Ural. Otd. Ross. Akad. Nauk, 2009.

  2. Vekinis, G. and Xanthopoulou, G., Hybrid TPS: a novel thermal protection system for atmospheric entry space probes based on SHS-produced MgO/spinel refractories, Int. J. Self-Propag. High-Temp. Synth., 2010, vol. 19, no. 4, pp. 258–275. https://doi.org/10.3103/S1061386210040059

    Article  CAS  Google Scholar 

  3. Zaychuk, A. and Iovleva, Ju., The study of ceramic pigments of spinel type with the use of slag of aluminothermal production of ferrotitanum, Chem. Chem. Technol., 2013, vol. 7, no. 2, pp. 217–225.

    Article  CAS  Google Scholar 

  4. Vinnik, I.B., Sirotyuk, M.M., Koval’skii, P.M., and Uvarova, I.V., Refractory and ceramic materials, Powder Metall. Met. Ceram., 1998, vol. 37, nos. 5–6, pp. 287–290.

    Article  CAS  Google Scholar 

  5. Karanasios, K., Xanthopoulou, G., Vekinis, G., and Zoumpoulakis, L., SHS-produced cobalt–alumina catalysts for dry reforming of methane, Int. J. Self-Propag. High-Temp. Synth., 2014, vol. 23, no. 4, pp. 222–231. https://doi.org/10.3103/S1061386214040037

    Article  CAS  Google Scholar 

  6. Hui, L., Heng-Yong, W., Yi, C., Rong-Li, S., Jing-Long, B., Ying-Na, W., Jian, L., and Jun-Hong, Z., Synthesis and characterization of MgAl2O4 spinel nanopowders via nanohydrolytic sol–gel route, J. Ceram. Soc. Jpn., 2017, vol. 125, no. 3, pp. 100–104.

    Article  Google Scholar 

  7. Sorokin, V.A., Yanovskii, L.S., Kozlov, V.A., and Surikov, E.V., Raketno-pryamotochnye dvigateli na tverdykh i pastoobraznykh toplivakh (Rocket Ramjet Engines Using Solid and Paste Propellants), Moscow: Fizmatlit, 2010.

  8. Rabinovich, V.A. and Khavin, Z.Ya., Kratkii khimicheskii spravochnik (Brief Chemical Handbook), Leningrad: Khimiya, 1977.

  9. Ruzinov, L.P. and Gulyanitskii, B.S., Ravnovesnye prevrashcheniya metallurgicheskikh reaktsii (Equilibrium Transformations in Metallurgical Reactions), Moscow: Metallurgiya, 1975.

  10. Kovalev, D.Yu. and Ponomarev, V.I., Time-resolved X-ray diffraction in SHS research and related areas: an overview, Int. J. Self-Propag. High-Temp. Synth., 2019, vol. 28, no. 2, pp. 114–123. https://doi.org/10.3103/S1061386219020079

    Article  Google Scholar 

  11. Pokhil, P.F., Belyaev, A.F., Frolov, Yu.V., Logachev, V.S., and Korotkov, A.I., Gorenie poroshkoobraznykh metallov v aktivnykh sredakh (Combustion of Powder Metals in Active Media), Moscow: Nauka, 1972.

  12. Kislyi, P.S., Neronov, V.A., Prikhna, T.A., and Bevza, Yu.V., Boridy alyuminiya (Aluminum Borides), Kiev: Naukova Dumka, 1990.

  13. Lidin, R.A., Molochko, V.A., and Andreeva, L.L., Neorganicheskaya khimiya v reaktsiyakh. Spravochnik (Inorganic Chemistry in Reactions: A Handbook), Moscow: Drofa, 2007.

  14. Barabanov, V.F., Sovremennye fizicheskie metody v geokhimii (Modern Physical Methods in Geochemistry), Leningrad: Leningrad. Gos. Univ., 1990.

  15. Balicheva, T.G. and Lobaneva, O.A., Elektronnye i kolebatel’nye spektry neorganicheskikh i koordinatsionnykh soedinenii (Electronic and Vibrational Spectra of Inorganic and Coordination Compounds), Leningrad: Leningrad. Gos. Univ., 1983.

  16. Chernyakova, K.V., Vrublevskii, I.A., Ivanovskaya, M.I., and Kotikov, D.A., Impurity–defect structure of anodic alumina produced by double-sided anodization in a tartaric acid solution, Zh. Prikl. Spektrosk., 2012, vol. 79, no. 1, pp. 83–89.

    Google Scholar 

  17. Müller, U., Inorganic Structural Chemistry, Chichester: Wiley, 2006, 2nd ed.

    Book  Google Scholar 

  18. Blank, V.D. and Estrin, E.I., Fazovye prevrashcheniya v tverdykh telakh pri vysokom davlenii (High-Pressure Phase Transformations of Solids), Moscow: Fizmatlit, 2011.

  19. Shafranovskii, I.I., Kristally mineralov. Krivogrannye, skeletnye i zernistye formy (Mineral Crystals: Curved-Face, Skeletal, and Granular Forms), Moscow: Gosgeoltekhizdat, 1961.

  20. Ivanov, O.K., Elementary, ideal, and real (equilibrium and nonequilibrium) crystals: systematization, Ural. Geol. Zh., 2012, no. 4, pp. 43–47.

  21. Mikhailov, G.G., Makrovets, L.A., and Smirnov, L.A., Thermodynamic modeling of phase equilibria in B2O3-containing oxide systems, Vestn. Yuzhno-Ural.Gos. Univ., 2014, vol. 14, no. 4, pp. 11–16.

    Google Scholar 

  22. Pishch, I.V., Rotman, T.I., Romanenko, Z.A., and Khainovskaya, E.N., Effect of mineralizers on the physicochemical properties of pigments, Steklo Keram., 1987, no. 4, pp. 23–24.

    Article  Google Scholar 

Download references

Funding

This work was supported by the Russian Federation Ministry of Science and Higher Education through the state research targets for the Tomsk Scientific Center, Siberian Branch, Russian Academy of Sciences (theme no. 0365-2019-0005) and the Merzhanov Institute of Structural Macrokinetics and Materials Science, Russian Academy of Sciences (theme no. 45.4).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Yu. Nazarova.

Additional information

Translated by O. Tsarev

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Radishevskaya, N.I., Nazarova, A.Y., L’vov, O.V. et al. Self-Propagating High-Temperature Synthesis of MgAl2O4 Spinel. Inorg Mater 56, 142–150 (2020). https://doi.org/10.1134/S0020168520010112

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0020168520010112

Keywords:

Navigation