Skip to main content
Log in

Effect of Structural Inhomogeneities on the Spin-Wave and Magnetic Properties of Monocrystalline Spinel Ferrite Films in the Microwave Range

  • Published:
Inorganic Materials Aims and scope

Abstract—

We have studied magnetic parameters of monocrystalline manganese spinel ferrite films differing in composition and structural perfection and assessed the effect of dislocation distribution on the frequency dependence of the ferromagnetic resonance (FMR) linewidth in the microwave range. The results demonstrate that, if an external magnetic field is perpendicular to the film surface, electron paramagnetic resonance (EPR) absorption lines correspond to ferromagnetic and spin wave resonances (SWRs). SWR is due to nanostructural surface inhomogeneities. The EPR spectrum of a tangently magnetized film represents a single dipole exchange oscillation spectrum. Parameters of dipole and exchange modes have been determined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. Nikitov, S.A., Kalyabin, D.V., Lisenkov, I.V., et al., Magnonics: a new research area in spintronics and spin wave electronics, Usp. Fiz. Nauk, 2015, vol. 185, no. 10, pp. 1099–1128.

    Article  Google Scholar 

  2. Chaibakhsh, N. and Moradi-Shoeili, Z., Enzyme mimetic activities of spinel substituted nanoferrites (MFe2O4): a review of synthesis, mechanism and potential applications, Mater. Sci. Eng., 2019, vol. 99, pp. 1424–1447.

    Article  CAS  Google Scholar 

  3. Nelo, M., Peräntie, J., Siponkoski, T., et al., Upside-down composites: electroceramics without sintering, Appl. Mater. Today, 2019, vol. 15, pp. 83–86.

    Article  Google Scholar 

  4. Deeptya, M., Srinivasa, Ch., Vijaya Babu, K., et al., Structural and electron spin resonance spectroscopic studies of MnxZn1–xFe2O4 (x = 0.5, 0.6, 0.7) nanoferrites synthesized by sol–gel auto combustion method, J. Magn. Magn. Mater., 2018, vol. 466, pp. 60–68.

    Article  Google Scholar 

  5. Afinogenov, V.B., Vysotskii, S.L., Gulyaev, Yu.V., et al., Spin wave devices for rf signal processing in the frequency range 50 MHz to 20 GHz, Radiotekhnika, 2000, no. 8, pp. 7–14.

  6. Prasad, S.A.V. et al., Synthesis of MFe2O4 (M = Mg2+, Zn2+, Mn2+) spinel ferrites and their structural, elastic and electron magnetic resonance properties, Ceram. Int., 2018, vol. 44, no. 9, pp. 10 517–10 524.

  7. Pourzaki, M., Kavkhani, R., Kianvash, A., and Hajalilou, A., Structure, magnetic and transmission characteristics of the co substituted mg ferrites synthesized via a standard ceramic route, Ceram. Int., 2019, vol. 45, no. 5, pp. 5710–5716.

    Article  CAS  Google Scholar 

  8. Tchokouansi, T.B., Tchomgo Felenou, H.T., Tchidjo, R.T., et al., Traveling magnetic wave motion in ferrites: impact of inhomogeneous exchange effects, Chaos, Solitons Fractals, 2019, vol. 121, pp. 1–5.

    Article  Google Scholar 

  9. Velikanova, Yu.V., Vinogradova, M.R., and Mitlina, L.A., Analysis of characteristics of magnetostatic waves propagating in spinel ferrite films inhomogeneous in the thickness direction, Izv. Vyssh. Uchebn. Zaved.,Fiz., 2018, vol. 61, no. 2, pp. 159–165.

    Google Scholar 

  10. Gurevich, A.G. and Melkov, G.A., Magnitnye kolebaniya i volny (Magnetic Oscillations and Waves), Moscow: Nauka, 1994.

  11. Mitlina, L.A., Physicochemical foundations of the growth, structural defects, and properties of monocrystalline spinel ferrite films, Vestn. Samarsk. Gos. Tekh. Univ., Ser. Fiz.-Mat. Nauki, 2004, no. 6, pp. 114–149.

  12. Mitlina, L.A., Molchanov, V.V., Badrtdinov, G.S., Nikiforova, I.V., and Kosareva, E.A., General aspects of spinel ferrite epilayer growth, Izv. Vyssh. Uchebn. Zaved.,Fiz., 2012, vol. 55, no. 4, pp. 53–60.

    Google Scholar 

  13. Mitlina, L.A. and Posypaiko, E.D., Behavior of dislocations in spinel ferrite films in external electric and magnetic fields, Elektron. Tekh., Ser. 6: Mater., 1985, no. 3, pp. 13–15.

  14. Nikitenko, V.I. and Osip’yan, Yu.A., Effect of dislocations on the optical, electrical, and magnetic properties of crystals, in Problemy sovremennoi kristallografii (Key Issues in Modern Crystallography), Moscow: Nauka, 1975, pp. 239–262.

  15. Matare, H., Defect Electronics in Semiconductors, New York: Wiley, 1971.

    Google Scholar 

  16. Mitlina, L.A., Badrtdinov, G.S., Velikanova, Yu.V., et al., Magnetic substructure of monocrystalline spinel ferrite films, Vestn. Samarsk. Gos. Tekh. Univ., Ser. Fiz.-Mat. Nauki, 2011, no. 2 (23), pp. 107–115.

  17. Mitlina, L.A., Badrtdinov, G.S., Kosareva, E.A., and Nikiforova, I.V., Structural mechanisms of perpendicular anisotropy in monocrystalline spinel ferrite films, Izv. Vyssh. Uchebn. Zaved., Fiz., 2011, no. 1, pp. 16–25.

  18. Letyuk, Yu.D., Levin, B.E., and Tret’yakov, L.M., Fiziko-khimicheskie osnovy polucheniya, svoistva i primenenie ferritov (Ferrites: Physicochemical Principles of Preparation, Properties, and Applications), Moscow: Metallurgiya, 1979.

  19. Salanskii, N.M. and Erukhimov, M.M., Fizicheskie svoistva i primenenie plenok (Physical Properties and Applications of Films), Novosibirsk: Nauka, 1975.

  20. Mitlina, L.A., Sidorov, A.A., Velikanova, Yu.V., et al., Crystalline and induced anisotropy and structural defects in single-crystal spinel ferrite films, Inorg. Mater., 2010, vol. 46, no. 2, pp. 212–216.

    Article  CAS  Google Scholar 

  21. Vashkovskii, A.N., Stal’makhov, V.S., and Sharaevskii, Yu.P., Magnitostaticheskie volny v elektronike sverkhvysokikh chastot (Magnetostatic Waves in Microwave Electronics), Saratov: Saratovsk. Univ., 1993.

  22. Gulyaev, Yu.V., Zil’berman, P.E., and Lugovskoi, A.V., Effect of inhomogeneous exchange and dissipation on the propagation of Damon–Eschbach surface waves in a ferromagnetic plate, Fiz. Tverd. Tela (Leningrad), 1981, vol. 23, no. 4, pp. 1136–1142.

    Google Scholar 

  23. Vysotskii, S.L., Kazakov, G.T., Nam, E.P., et al., Resonance interaction of magnetostatic and exchange waves in a structure with two exchange-coupled ferrite films, Pis’ma Zh. Tekh. Fiz., 1993, vol. 19, no. 11, pp. 65–69.

    CAS  Google Scholar 

  24. Krupička, S., Physik der Ferrite und der verwandten magnetischen Oxide, Prague: Academia, 1973.

    Book  Google Scholar 

  25. Vysotskii, S.L., Kozhevnikov, A.V., Kazakov, G.T., Nikitov, S.A., and Filimonov, Yu.A., Parametric instability of surface magnetostatic waves in two-dimensional magnon crystals, Izv. Vyssh. Uchebn. Zaved.,Prikl. Nelineinaya Dinamika, 2007, vol. 15, no. 3, pp. 58–73.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. V. Velikanova.

Additional information

Translated by O. Tsarev

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Velikanova, Y.V., Kosareva, E.A., Mitlina, L.A. et al. Effect of Structural Inhomogeneities on the Spin-Wave and Magnetic Properties of Monocrystalline Spinel Ferrite Films in the Microwave Range. Inorg Mater 55, 1206–1213 (2019). https://doi.org/10.1134/S0020168519120136

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0020168519120136

Keywords:

Navigation