Skip to main content
Log in

Effect of Oxygen Vacancies in the SrO Planes on the Tc(x) of Bi2Sr2 –xLaxCuO6 + δ Crystals

  • Published:
Inorganic Materials Aims and scope

Abstract—

We report the first systematic study of the effect of oxidizing annealing on the superconducting transition temperature Tc of Bi2Sr2 –xLaxCuO6 + δ crystals. Using a standard heat treatment procedure, we have obtained detailed Tc(x) data for Bi2Sr2 –xLaxCuO6 + δ crystals in the range x = 0.35–0.75. Comparison of the shape of the Tc(x) curve for Bi2Sr2 –xLaxCuO6 + δ with that for La2 –xSrxCuO4 demonstrates a factor of 4 reduction in the dependence of hole concentration in the CuO2 planes from a La3+ substitution on the Sr2+ sites becouse oxygen content (or index) varies. This finding can be accounted for in terms of changes in the amount of oxygen vacancies in the SrO planes. In particular, the oxygen index in Bi2Sr2 –xLaxCuO6 + δ varies by 0.3 per formula unit.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. Anderson, P.W., Theory of Superconductivity in High-Tc Cuprates, New York: Princeton Univ. Press, 1997.

    Google Scholar 

  2. Chaban I.A. Superconducting clusters in the pseudogap region, Phys. Solid State, 2008, vol. 50, no. 5, pp. 803–807.

    Article  CAS  Google Scholar 

  3. Mitsen, K.V. and Ivanenko, O.M., Towards the issue of the origin of Fermi surface, pseudogaps and Fermi arcs in cuprate HTSCs, J. Alloys Compd., 2019, vol. 791, pp. 30–38. https://doi.org/10.1016/j.jallcom.2019.03.273

    Article  CAS  Google Scholar 

  4. Revin, L.S., Vopilkin, E.A., Pankratov, A.L., Kraev, S.A., Yablokov, A.A., and Kulakov, A.B., Fast technology for fabrication of thick single Bi2Sr2CaCu2O8 +x mesas on a Cu substrate, Supercond. Sci. Technol., 2018, vol. 31, paper 104 001. https://doi.org/10.1088/1361-6668/aadac8

    Article  Google Scholar 

  5. Yoshizaki, R., Kuroda, N., Nakamura, S., and Ishikawa, N., Effect of oxygen vacancy on magnetic and superconducting properties in La1.82Sr0.18CuO4, Phys. C (Amsterdam. Neth.), 1992, vol. 199, pp. 143–148. https://doi.org/10.1016/0921-4534(92)90552-N

    Article  CAS  Google Scholar 

  6. Idemoto, Y. and Fueki, K., Oxygen nonstoichiometry and high temperature conductivity of the 2201 phase of the Bi–Sr–Cu–O superconducting oxide, Phys. C (Amsterdam. Neth.), 1992, vol. 190, pp. 502–510. https://doi.org/10.1016/0921-4534(92)90712-L

    Google Scholar 

  7. Ono, S. and Ando, Y., Evolution of the resistivity anisotropy in Bi2Sr2 –xLaxCuO6 + δ single crystals for a wide range of hole doping, Phys. Rev. B: Condens. Matter Mater. Phys., 2003, vol. 67, paper 104 512. https://doi.org/10.1103/PhysRevB.67.104512

  8. Ono, S., Ando, Y., Marayama, T., et al., Metal-to-insulator crossover in the low-temperature normal state of Bi2Sr2 –xLaxCuO6 – δ, Phys. Rev. Lett., 2000, vol. 85, pp. 638–641. https://doi.org/10.1103/PhysRevLett.85.638

    Article  CAS  PubMed  Google Scholar 

  9. Kimura, S. and Shindo, I., Single crystal growth of YIG by the floating zone method, J. Cryst. Growth, 1977, vol. 41, no. 2, pp. 192–198. https://doi.org/10.1016/0022-0248(77)90045-8

    Article  CAS  Google Scholar 

  10. Chen, D., Lin, C., Maljuk, A., and Zhou, F., in Growth and Characterization of Bulk Superconductor Material, Springer Series in Materials Science, New York: Springer, 2016, vol. 243, pp. 59–68. https://doi.org/10.1007/978-3-319-31548-5

    Book  Google Scholar 

  11. Belokoneva, E.L., Leonyuk, L.I., Leonyuk, N.I., and Urusov, V.S., Crystal growth and structural model of Bi-containing high-Tc superconductors, Dokl. Akad. Nauk SSSR, 1989, vol. 306, no. 2, pp. 370–374.

    CAS  Google Scholar 

  12. Kovba, L.M. and Trunov, V.K., Rentgenofazovyi analiz (X-Ray Diffraction Phase Analysis), Moscow: Mosk. Gos. Univ., 1969, pp. 122–123.

  13. Kulakov, A.B., Maier, D., Maljuk, A., Bdikin, I.K., and Lin, C.T., Study of growth/intergrowth behavior and structural analyses of Bi2Sr2Ca2Cu3O10 + δ single crystals, J. Cryst. Growth, 2006, vol. 296, pp. 69–74. https://doi.org/10.1016/j.jcrysgro.2006.08.015

    Article  CAS  Google Scholar 

  14. Martovitsky, V.P., Types of defect ordering in undoped and lanthanum-doped Bi2201 single crystals, J. Exp. Theor. Phys., 2006, vol. 102, no. 6, pp. 958–965.

    Article  CAS  Google Scholar 

  15. Shovkun, D.V., Trunin, M.R., Zhukov, A.A., et al., c‑Axis penetration depth in Bi2Sr2CaCu2O8+δ single crystals measured by ac-susceptibility and cavity perturbation technique. JETP Lett., 2000, vol. 71, pp. 92–96.

    Article  CAS  Google Scholar 

  16. Ohsugi, S., Kitaoka, Y., Ishida, K., Zheng, G.-Q., and Asayama, K., Cu NMR and NQR studies of high-Tc superconductor La2 –xSrxCuO4, J. Phys. Soc. Jpn., 1994, vol. 63, pp. 700–715. https://doi.org/10.1143/JPSP.63.700

    Article  CAS  Google Scholar 

  17. Leligny, H., Durcok, S., Labbe, P., et al., X-ray investigation of the incommensurate modulated structure of Bi2.08Sr1.84CuO6 – δ, Acta Crystallogr., Sect. B: Struct. Sci., 1992, vol. 48, pp. 407–418. https://doi.org/10.1107/S0108768192002143

    Article  Google Scholar 

  18. Beskrovnyi, A.I., Durcok, S., Hejtmanek, J., et al., Structural modulation, oxygen content and transport properties in Bi2.13Sr1.87CuO6 + γ and Bi2.05Sr1.54-La0.41CuO6 + γ superconductors, Phys. C (Amsterdam, Neth.,), 1994, vol. 222, pp. 375–385. https://doi.org/10.1016/0921-4534(94)90556-8

    Article  CAS  Google Scholar 

  19. Khasanova, N.R. and Antipov, E.V., Bi-2201 phases. Synthesis, structures and superconducting properties, Phys. C (Amsterdam, Neth.), 1995, vol. 246, pp. 241–252. https://doi.org/10.1016/0921-4534(95)00172-7

    Article  CAS  Google Scholar 

  20. Vstavskaya, E.Yu., Zuev, A.Yu., Cherepanov, V.A., et al., The Bi2O3–SrO phase diagram, J. Phase Equilib., 1994, vol. 15, no. 6, pp. 573–576. https://doi.org/10.1007/BF02647617

    Article  CAS  Google Scholar 

  21. Maljuk, A.N., Phase equilibria in the La(Nd)–Sr(Ce)–Cu–O systems and growth of high-Tc superconductor single crystals, Cand. Sci. (Eng.) Dissertation, Chernogolovka: Inst. of Solid State Physics, Russ. Acad. Sci., 1995.

Download references

ACKNOWLEDGMENTS

We gratefully thank our colleagues at the Institute of Solid State Physics, Russian Academy of Sciences: L.Ya. Vinnikov and G.A. Emel’chenko for their helpful comments, A.D. Shovkun for his assistance in the crystal growth work, A.F. Shevchun for measuring the susceptibility of some of the samples, S.S. Khasanov for performing the X-ray diffraction work, and E.Yu. Postnova and D.V. Matveev for the electron-microscopic measurements.

Funding

This work was supported by the Russian Federation Ministry of Science and Higher Education (state research target for the Institute of Solid State Physics, Russian Academy of Sciences) and in part by the Russian Foundation for Basic Research (grant nos. 12-02-01009-a and 13-02-01011-a).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. B. Kulakov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kulakov, A.B., Shovkun, D.V. & Trunin, M.R. Effect of Oxygen Vacancies in the SrO Planes on the Tc(x) of Bi2Sr2 –xLaxCuO6 + δ Crystals. Inorg Mater 55, 1242–1249 (2019). https://doi.org/10.1134/S0020168519120094

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0020168519120094

Keywords:

Navigation