Skip to main content
Log in

Porous Reaction-Bonded Silicon Nitride Ceramics: Fabrication Using Hollow Polymer Microspheres and Properties

  • Published:
Inorganic Materials Aims and scope

Abstract—

A process has been proposed for the preparation of porous reaction-bonded silicon nitride (RBSN) via the addition of a pore former, uniaxial pressing, and subsequent reaction sintering in a vacuum furnace. As a pore former, we used a commercially available powder consisting of hollow polymer microspheres (Akzonobel) with an average diameter of 9 μm. We have studied the effect of pore former content in green compacts on the mechanical, dielectric, and thermophysical properties of the ceramics. The proposed process allows one to prepare porous RBSN with the following properties: σb = 48 MPa, ε = 3.2, tan δ = 35 × 10–4 at a frequency of 10 GHz, and λ = 0.96 W/(m K) at 1100°C. The ceramic obtained in this study is potentially attractive for industrial application as a radar-transparent structural material with reduced thermal conductivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. Andrievskii, R.A. and Spivak, I.I., Nitrid kremniya i materialy na ego osnove (Silicon Nitride and Related Materials), Moscow: Metallurgiya, 1984.

  2. Ziegler, G., Heinrich, J., and Wotting, G., Relationships between processing, microstructure and properties of dense and reaction-bonded silicon nitride, J. Mater. Sci., 1987, vol. 22, pp. 3041–3086.

    Article  CAS  Google Scholar 

  3. Nair, R.U., Vandana, S., Sandhya, S., and Jha, R.M., Temperature-dependent electromagnetic performance predictions of a hypersonic streamlined radome, Prog. Electromagn. Res., 2015, vol. 154, pp. 65–78.

    Article  Google Scholar 

  4. Romashin, A.G., Gaidachuk, V.E., Karpov, Ya.S., and Rusin, M.Yu., Radioprozrachnye obtekateli letatel’nykh apparatov. Proektirovanie, konstruktsionnye materialy, tekhnologiya proizvodstva, ispytaniya. Uchebnoe posobie (Streamlined Radomes for Aircraft: Design Engineering, Structural Materials, Technological Aspects of Production, and Testing. A Learning Guide), Kharkiv: Nats. Aerokosm. Univ. “Kharkiv. Aviatsionnyi Institut,” 2003, p. 239.

  5. Zhou, Y., Hyuga, H., Kusano, D., Yoshizawa, Y., Ohji, T., and Hirao, K., Development of high-thermal-conductivity silicon nitride ceramics, J. Asian Ceram. Soc., 2015, vol. 3, pp. 221–229. https://doi.org/10.1016/j.jascer.2015.03.003

    Article  Google Scholar 

  6. Kitayama, M., Hirao, K., Toriyama, M., and Kanzaki, S., Thermal conductivity of β-Si3N4: effect of various microstructural factors, J. Am. Ceram. Soc., 1999, vol. 82, no. 11, pp. 3105–3112.

    Article  CAS  Google Scholar 

  7. Kaidash, O.N., Fesenko, I.P., and Kryl’, Ya.A., Heat conductivity, physicomechanical properties and interrelations of them and structures of pressureless sintered composites produced of Si3N4–Al2O3–Y2O3(–ZrO2) nanodispersed system, J. Superhard Mater., 2014, vol. 36, no. 2, pp. 96–104.

    Article  Google Scholar 

  8. Watari, K., Hirao, K., and Toriyama, M., Effect of grain size on the thermal conductivity of Si3N4, J. Am. Ceram. Soc., 1999, vol. 82, no. 3, pp. 777–779.

    Article  CAS  Google Scholar 

  9. Hirosaki, N., Ogata, S., Kocer, C., et al., Molecular dynamics calculation of the ideal thermal conductivity of single-crystal α- and β-Si3N4, Phys. Rev. B: Condens. Matter Mater. Phys., 2002, vol. 65, no. 134 110. https://doi.org/10.1103/PhysRevB.65.134110

    Article  CAS  Google Scholar 

  10. Antsiferov, V.N. and Gilev, V.G., Properties of porous silicon-nitride materials, Ogneupory, 1988, no. 7, pp. 20–23.

  11. Kornienko, P.A., Naumenko, V.Ya., Chekhovich, V.A., et al., Strength and thermophysical properties of porous silicon nitride materials, Sov. Powder Metall. Met. Ceram., 1984, vol. 23, no. 11, pp. 875–877.

    Google Scholar 

  12. Li, J.-Q., Fa, L., Zhu, D.-M., and Zhou, W.-C., Preparation and dielectric properties of porous silicon nitride ceramics, Trans. Nonferrous Met. Soc. China, 2006, vol. 16, pp. 487–489.

    Article  Google Scholar 

  13. Jiang, G.-P., Yang, J.-F., and Gao, J.-Q., Porous silicon nitride ceramics prepared by extrusion using starch as binder, J. Am. Ceram. Soc., 2008, vol. 91, no. 11, pp. 3510–3516. https://doi.org/10.1111/j.1551-2916.2008.02701.x

    Article  CAS  Google Scholar 

  14. Fukasawa, T., Deng, Z.-Y., and Ando, M., Synthesis of porous silicon nitride with unidirectionally aligned channels using freeze-drying process, J. Am. Ceram. Soc., 2002, vol. 85, no. 9, pp. 2151–2155. https://doi.org/10.1111/j.1151-2916.2002.tb00426.x

    Article  CAS  Google Scholar 

  15. Gonzenbach, U.T., Studart, A.R., Tervoort, E., and Gauckler, L.J., Macroporous ceramics from particle-stabilized wet foams, J. Am. Ceram. Soc., 2007, vol. 90, no. 1, pp. 16–22. https://doi.org/10.1111/j.1551-2916.2006.01328.x

    Article  CAS  Google Scholar 

  16. Li, X., Wub, P., and Zhu, D., Effect of foaming pressure on the properties of porous Si3N4 ceramic fabricated by a technique combining foaming and pressureless sintering, Scr. Mater., 2013, vol. 68, no. 11, pp. 877–880. https://doi.org/10.1016/j.scriptamat.2013.02.033

    Article  CAS  Google Scholar 

  17. Yu, J., Yang, J., Li, H., Xi, X., and Huang, Y., Study on particle-stabilized Si3N4 ceramic foams, Mater. Lett., 2011, vol. 65, no. 12, pp. 1801–1804. https://doi.org/10.1016/j.matlet.2011.03.082

    Article  CAS  Google Scholar 

  18. Kandi, K.K. Thallapalli, N., et al., Development of silicon nitride-based ceramic radomes, Int. J. Appl. Ceram. Technol., 2015, vol. 12, no. 5, pp. 909–920. https://doi.org/10.1111/ijac.12305

    Article  CAS  Google Scholar 

  19. Li, B., Jiang, P., Yan, M.-W., Li, Y., Hou, X.-M., and Chen, J.-H., Characterization and properties of rapid fabrication of network porous Si3N4 ceramics, J. Alloys Compd., 2017, vol. 709, pp. 717–723. https://doi.org/10.1016/j.jallcom.2017.03.223

    Article  CAS  Google Scholar 

  20. Walton, J.D., Proc. 2nd Int. Conf. on Electromagnetic Windows, Paris, 1971, vol. 2, pp. 8–10.

  21. Sillapasa, K., Danchaivijit, S., and Sujirote, K., Effects of silicon powder size on the processing of reaction-bonded silicon nitride, J. Met.,Mater. Miner., 2005, vol. 15, no. 2, pp. 97–102.

    CAS  Google Scholar 

  22. Kawai, C. and Yamakawa, A., Effect of porosity and microstructure on the strength of Si3N4: designed microstructure for high strength, high thermal shock resistance, and facile machining, J. Am. Ceram. Soc., 1997, vol. 80, no. 10, pp. 2705–2708.

    Article  CAS  Google Scholar 

  23. Danforth, S.C., Jennings, H.M., and Richman, M.H., The influence of microstructure on the strength of reaction bonded silicon nitride (RBSN), Acta Metall., 1979, vol. 27, no. 1, pp. 123–130.

    Article  CAS  Google Scholar 

  24. Zhou, J., Fan, J.-P., Sun, G.-L., Zhang, J.-Y., et al., Preparation and properties of porous silicon nitride ceramics with uniform spherical pores by improved pore-forming agent method, J. Alloys Compd., 2015, vol. 632, pp. 655–660. https://doi.org/10.1016/j.jallcom.2015.01.305

    Article  CAS  Google Scholar 

  25. Park, D.-S., Lee, M.-W., Kim, H.-D., Park, Y.-J., and Jung, Y.-G., Fabrication and properties of porous RBSN, Key Eng. Mater., 2005, vol. 287, pp. 277–281. https://doi.org/10.4028/www.scientific.net/KEM.287.277

    Article  CAS  Google Scholar 

  26. Moulson, A.J., Reaction-bonded silicon nitride: its formation and properties, J. Mater. Sci., 1979, vol. 14, no. 5, pp. 1017–1051. https://doi.org/10.1007/BF00561287

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. K. Georgiu.

Additional information

Translated by O. Tsarev

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Georgiu, N.K., Georgiu, I.F., Klemazov, K.V. et al. Porous Reaction-Bonded Silicon Nitride Ceramics: Fabrication Using Hollow Polymer Microspheres and Properties. Inorg Mater 55, 1290–1296 (2019). https://doi.org/10.1134/S0020168519120057

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0020168519120057

Keywords:

Navigation