Skip to main content
Log in

Structure of the Order Parameter of Topological Superconductors Based on 3d and 4d Transition Metal Oxides

  • Published:
Inorganic Materials Aims and scope

Abstract—

We consider experimental data on the order parameter structure in superconductors with a layered perovskite structure: La2CuO4 and Sr2RuO4. Experimental data are analyzed using the space group approach to two-electron states in crystals. From the crystalline symmetry of Sr2RuO4, we derive two-electron functions with Eu symmetry, having nodal planes consistent with experimental data. In the case of La2CuO4 and high-Tc materials, the order parameter corresponds to the irreducible representation B1g with hidden symmetry D4h. It is also shown that the charge density waves found in pseudogap states of high-Tc materials can be thought of as two-electron states of equivalent electrons with a nonzero momentum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. Bednorz, J.G. and Müller, K.A., Possible high T c superconductivity in the Ba–La–Cu–O systems, Z. Phys. B, 1986, vol. 64, no. 2, pp. 189–193.

    Article  CAS  Google Scholar 

  2. Maeno, Y., Hashimoto, H., Yoshida, K., Nishizaki, S., Fujita, T., Bednorz, J.G., and Lichtenberg, F., Superconductivity in layered perovskite without copper, Nature, 1994, vol. 372, pp. 532–534.

    Article  CAS  Google Scholar 

  3. Bardeen, J.L., Cooper, N., and Schriffer, J.R., Theory of superconductivity, Phys. Rev., 1957, vol. 108, no. 5, pp. 1175–1204.

    Article  CAS  Google Scholar 

  4. Zhang, Y., Liu, W., Zhu, X., Zhao, H., Hu, Z., He, C., and Wen, H.-H., Unprecedented high irreversibility line in the nontoxic cuprate superconductor (Cu,C)Ba2Ca3Cu4O11 + δ, Sci. Adv., 2018, vol. 4, paper 0192.

  5. Shaplygin, I.S., Kakhan, B.G., and Lazarev, V.B., Preparation and properties of Ln2CuO4 (Ln = La, Pr, Nd, Sm, Eu, Gd) solid solutions, Zh. Neorg. Khim., 1979, vol. 24, no. 6, pp. 1478–1485.

    CAS  Google Scholar 

  6. Steglich, F., Aarts, J., Bredl, C.D., Lieke, W., Meschede, D., Franz, W., and Schafer, H., Superconductivity in the presence of strong Pauli paramagnetism: CeCu2Si2, Phys. Rev. Lett., 1979, vol. 43, pp. 1892–1895.

    Article  CAS  Google Scholar 

  7. Bishop, D.J., Varma, C.M., Batlogg, B., Bucher, E., Fisk, Z., and Smith, J.L., Ultrasonic attenuation in UPt3, Phys. Rev. Lett., 1984, vol. 53, no. 10, pp. 1009–1011.

    Article  CAS  Google Scholar 

  8. Ott, H.R., Rudiger, H., Rice, T.M., Ueda, K., Fisk, Z., and Smith, J.L., p-Wave superconductivity in UBe13, Phys. Rev. Lett., 1984, vol. 52, no. 21, pp. 1915–1918.

    Article  CAS  Google Scholar 

  9. Yarzhemsky, V.G. and Murav’ev, E.N., Space group approach to the wavefunction of a Cooper pair, J. Phys.: Condens. Matter, 1992, vol. 4, pp. 3525–3532.

    Google Scholar 

  10. Yarzhemsky, V.G., Space-group approach to the nodal structure of superconducting order parameter in UPt3, Phys. Status Solidi B, 1998, vol. 209, pp. 101–107.

    Article  CAS  Google Scholar 

  11. Yarzhemsky, V.G. and Nefedov, V.I., Symmetry of two-electron states in unconventional superconductors, Inorg. Mater., 2005, vol. 41, no. 12, pp. 1247–1255.

    Article  CAS  Google Scholar 

  12. Yarzhemsky, V.G., Nodal quantum numbers for two-electron states in solids, Few-Body Systems, 2012, vol. 53, no. 3, pp. 499–504.

    Article  CAS  Google Scholar 

  13. Yarzhemsky, V.G., Wavefunction of a Cooper pair in crystals of \(D_{{2{\text{h}}}}^{1}\) and \(D_{{4{\text{h}}}}^{{17}}\) symmetry, Z. Phys. B: Condens. Matter, 1995, vol. 99, no. 1, pp. 19–23.

    Article  CAS  Google Scholar 

  14. Yarzhemsky, V.G., Group theoretical lines of nodes in triplet chiral superconductor Sr2RuO4, J. Phys. Soc. Jpn., 2018, vol. 87, paper 114 711.

  15. Tsuei, C.C. and Kirtley, J.R., Pairing symmetry in cuprate superconductors, Rev. Mod. Phys., 2000, vol. 72, pp. 969–1017.

    Article  CAS  Google Scholar 

  16. Yarzhemsky, V.G. and Nefedov, V.I., Crystal symmetry and the structure of two-electron states in high-temperature superconductors, Dokl. Phys., 2005, vol. 50, no. 10. pp. 494–498.

    Article  CAS  Google Scholar 

  17. Alloul, H., Ohno, T., and Mendels, P., 89Y NMR evidence for a Fermi-liquid behavior in YBa2Cu3O6 + x, Phys. Rev. Lett., 1989, vol. 63, pp. 1700–1703.

    Article  CAS  PubMed  Google Scholar 

  18. Kaminski, A., Rosenkranz, S., Fretwell, H.M., Campuzano, J.C., Li, Z., Raffy, H., Cullen, W.G., You, H.C., Olson, G., Varma, C.M., and Höchst, H., Spontaneous breaking of time-reversal symmetry in the pseudogap state of a high-T c superconductor, Nature, 2002, vol. 416, pp. 610–612.

    Article  CAS  PubMed  Google Scholar 

  19. Borisenko, S.V., Kordyuk, A.A., Koitzsch, A., Kim, T.K., Nenkov, K.A., Knupfer, M., Fink, J., Grazioli, C., Turchini, S., and Berger, H., Circular dichroism in angle-resolved photoemission spectra of under- and overdoped Pb-Bi2212, Phys. Rev. Lett., 2004, vol. 92, paper 207 001.

  20. He, J., Mion, T.R., Gao, S., Myers, G.T., Arita, M., Shimada, K., Gu, G.D., and He, R.H., Angle-resolved photoemission with circularly polarized light in the nodal mirror plane of underdoped Bi2Sr2CaCu2O8 + δ superconductor, Appl. Phys. Lett., 2016, vol. 109, paper 182 601.

  21. Fauqué, B., Sidis, Y., Hinkov, V., Pailhes, S., Lin, C.T., Chaud, X., and Bourges, P., Magnetic order in the pseudogap phase of high-T c superconductors, Phys. Rev. Lett., 2006, vol. 96, paper 197 010.

  22. Li, Y., Baledent, V., Yu, G., Barisic, N., Hradil, K., Mole, R.A., Sidis, Y., Steffens, P., Zhao, X., Bourges, P., and Greven, M., Hidden magnetic excitation in the pseudogap phase of a high-T c superconductor, Nat. Lett., 2010, vol. 468, pp. 283–285.

    Article  CAS  Google Scholar 

  23. Xia, J., Schemm, E., Deutscher, G., Kivelson, S.A., Bonn, D.A., Hardy, W.N., Liang, R., Siemons, W., Koster, G., Fejer, M.M., and Kapitulnik, A., Polar Kerr effect of the high-temperature superconductor YBa2Cu3O6 + x: evidence of broken symmetry near the pseudogap temperature, Phys. Rev. Lett., 2008, vol. 100, paper 127 002.

  24. Daou, R., Chang, J., Le Boeuf, D., Cyr-Choiniere, O., Laliberte, F., Doiron-Leyraud, N., Ramshaw, B.J., Liang, R., Bonn, D.A., Hardy, W.N., and Taillefer, L., Broken rotational symmetry in the pseudogap phase of a high-T c superconductor, Nature, 2010, vol. 463, pp. 519–522.

    Article  CAS  PubMed  Google Scholar 

  25. Hinkov, V., Haug, D., Fauqué, B., Bourges, P., Sidis, Y., Ivanov, A., Bernhard, C., Lin, C.T., and Keimer, B., Electronic liquid crystal state in the high-temperature superconductor YBa2Cu3O6.45, Science, 2008, vol. 319, pp. 597–600.

    Article  CAS  PubMed  Google Scholar 

  26. Van Harlingen, D.J., Phase-sensitive tests of the symmetry of the pairing state in the high-temperature superconductors—evidence for \({{d}_{{{{x}^{{\text{2}}}} - {{y}^{{\text{2}}}}}}} \) symmetry, Rev. Mod. Phys., 1995, vol. 67, no. 2, pp. 515–535.

    Article  CAS  Google Scholar 

  27. Hashimoto, M.M., Vishik, I.M., He, R.H., Devereaux, T.P., and Shen, Z., Energy gaps in high-transition-temperature cuprate superconductors, Nat. Phys., 2014, vol. 10, pp. 483–495.

    Article  CAS  Google Scholar 

  28. Chang, J., Blackburn, E., Holmes, A.T., Christensen, N.B., Larsen, J., Mesot, J., Ruixing, Liang, R., Bonn, D.A., Hardy, W.N., Watenphul, A., Zimmermann, M.V., Forgan, E.M., and Hayden, S.M., Direct observation of competition between superconductivity and charge density wave order in YBa2Cu3Oy , Nat. Phys., 2012, vol. 8, pp. 871–876.

    Article  CAS  Google Scholar 

  29. Montiel, X., Kloss, T., and Pépin, C., Effective SU(2) theory for the pseudogap state, Phys. Rev. B: Condens. Matter Mater. Phys., 2017, vol. 95, paper 104 510.

  30. Montiel, X., Kloss, T., and Pépin, C., Local particle–hole pair excitations by SU(2) symmetry fluctuations, Sci. Rep., 2017, vol. 7, paper 3477.

  31. Morice, C., Chakraborty, D., and Pépin, C., Collective mode in the SU(2) theory of cuprates, Phys. Rev. B: Condens. Matter Mater. Phys., 2018, vol. 98, paper 224 514.

  32. Ishida, K., Mukuda, H., Kitaoka, Y., Asayama, K., Mao, Z.Q., Mori, Y., and Maeno, Y., Spin-triplet superconductivity in Sr2RuO4 identified by 17O Knight shift, Nature, 1998, vol. 96, pp. 658–660.

    Article  CAS  Google Scholar 

  33. Nelson, K.D., Mao, Z.Q., Maeno, Y., and Liu, Y., Odd-parity superconductivity in Sr2RuO4, Science, 2004, vol. 306, no. 5699, pp. 1151–1154.

    Article  CAS  PubMed  Google Scholar 

  34. Luke, G.M., Fudamoto, Y., Kojima, K.M., Larkin, M.I., Merrin, J., Nachumi, B., Uemura, Y.J., Maeno, Y., Mao, Z.Q., Mori, Y., Nakamura, H., and Sigrist, M., Time-reversal symmetry-breaking superconductivity in Sr2RuO4, Nature, 1998, vol. 394, pp. 558–561.

    Article  CAS  Google Scholar 

  35. Bonalde, I., Yanoff, B.D., Salamon, M.B., Van Harlingen, D.J., Chia, E.M.E., Mao, Z.Q., and Maeno, Y., Temperature dependence of the penetration depth in Sr2RuO4: evidence for nodes in the gap function, Phys. Rev. Lett., 2000, vol. 85, pp. 4775–4778.

    Article  CAS  PubMed  Google Scholar 

  36. Rice, T.M. and Sigrist, M., Sr2RuO4: an electronic analogue of 3He, J. Phys. Condens. Matter, 1995, vol. 7, pp. L643–L648.

    Article  CAS  Google Scholar 

  37. Lupien, C., MacFarlane, W.A., Proust, C., Taillefer, L., Mao, Z.Q., and Maeno, Y., Ultrasound attenuation in Sr2RuO4: an angle-resolved study of the superconducting gap function, Phys. Rev. Lett., 2001, vol. 86, pp. 5986–5986.

    Article  CAS  PubMed  Google Scholar 

  38. Deguchi, K., Mao, Z.Q., and Maeno, Y.J., Determination of the superconducting gap structure in all bands of the spin-triplet superconductor Sr2RuO4, J. Phys. Soc. Jpn., 2004, vol. 73, pp. 1313–1321.

    Article  CAS  Google Scholar 

  39. Hassinger, E., Bourgeois-Hope, P., Taniguchi, H., René de Cotret, S., Grissonnanche, G., Anwar, M.S., Maeno, Y., Doiron-Leyraud, N., and Taillefer, L., Vertical line nodes in the superconducting gap structure of Sr2RuO4, Phys. Rev. X, 2017, vol. 7, paper 011 032.

  40. Blount, E.I., Symmetry properties of triplet superconductors, Phys. Rev. B: Condens. Matter Mater. Phys., 1985, vol. 32, pp. 2935–2944.

    Article  CAS  Google Scholar 

  41. Xia, J., Maeno, Y., Beyersdorf, P.T., Fejer, M.M., and Kapitulnik, A., High resolution polar Kerr effect measurements of Sr2RuO4: evidence for broken time reversal symmetry in the superconducting state, Phys. Rev. Lett., 2006, vol. 97, paper 167 002.

  42. Maeno, Y., Kittaka, S., Nomura, T., Yonezava, S., and Ishida, K., Evaluation of spin-triplet superconductivity in Sr2RuO4, J. Phys. Soc. Jpn., 2012, vol. 81, paper 011 009.

  43. Kovalev, O.V., Neprivodimye i indutsirovannye predstavleniya grupp (Irreducible and Induced Representations of Groups), Moscow: Nauka, 1985.

  44. Bradley, C.J. and Davies, B.L., Kronecker products and symmetrized squares of irreducible representations of space groups, J. Math. Phys., 1970, vol. 11, pp. 1536–1552.

    Article  Google Scholar 

  45. Yarzhemsky, V.G., Izotov, A.D., and Izotova, V.O., Structure of the order parameter in iron pnictide-based superconducting materials, Inorg. Mater., 2017, vol. 53, no. 9, pp. 923–929. https://doi.org/10.1134/S0020168517090163

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the Russian Federation Ministry of Education and Science (state research target for the Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, in the field of basic research).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. G. Yarzhemsky.

Additional information

Translated by O. Tsarev

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yarzhemsky, V.G., Izotov, A.D. Structure of the Order Parameter of Topological Superconductors Based on 3d and 4d Transition Metal Oxides. Inorg Mater 55, 944–951 (2019). https://doi.org/10.1134/S002016851909019X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S002016851909019X

Keywords:

Navigation