Skip to main content
Log in

Ferromagnetism of Alloys Based on Mn- and Ni-Doped Indium Antimonide

  • Published:
Inorganic Materials Aims and scope

Abstract—

We have synthesized polycrystalline indium antimonide samples codoped with Mn (1 at %) and Ni (0.8, 1, or 1.2 at %). The magnetic properties of these materials have been shown to be dominated by Ni2 –хMnSb (0 < х < 1) clusters, whose composition and Curie temperature depend on Ni content. The samples exhibit metallic behavior of conductivity and have a positive magnetoresistance below room temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Hayashi, T., Tanaka, M., Nishinaga, T., and Shimada, H., Magnetic and magnetotransport properties of new III–V diluted magnetic semiconductors: GaMnAs, J. Appl. Phys., 1997, vol. 81, no. 8, pp. 4865–4867. https://doi.org/10.1063/1.364859

    Article  CAS  Google Scholar 

  2. Matsukura, F., Ohno, H., Shen, A., and Sugawara, Y., Transport properties and origin of ferromagnetism in (Ga,Mn)As, Phys. Rev. B: Condens. Matter Mater. Phys., 1998, vol. 57, no. 4, pp. 2037–2040. https://doi.org/10.1103/PhysRevB.57.R2037

    Article  Google Scholar 

  3. Ohno, H., Matsukura, F., Omiya, T., and Akiba, N., Spin-dependent tunneling and properties of ferromagnetic (Ga,Mn)As, J. Appl. Phys., 1999, vol. 85, no. 8, pp. 4277–4282. https://doi.org/10.1063/1.370343

    Article  CAS  Google Scholar 

  4. Yanagi, S., Kuga, K., Slupinski, T., and Munekata, H., Carrier-induced ferromagnetic order in the narrow gap III–V magnetic alloy semiconductor (In,Mn)Sb, Phys. E (Amsterdam, Neth.), 2004, vol. 20, no. 3, pp. 333–337. https://doi.org/10.1016/j.physe.2003.08.029

  5. Matsukura, F., Abe, E., and Ohno, H., Magnetotransport properties of (Ga,Mn)Sb, J. Appl. Phys., 2000, vol. 87, no. 9, pp. 6442–6444. https://doi.org/10.1063/1.372732

    Article  CAS  Google Scholar 

  6. Adhikari, T. and Basu, S., Electrical properties of gallium manganese antimonide: a new diluted magnetic semiconductor, Jpn. J. Appl. Phys., 1994, vol. 33, no. 8, pp. 4581–4582. https://doi.org/10.1143/JJAP.33.4581

    Article  CAS  Google Scholar 

  7. Akinaga, H., Borghs, G., Miyanishi, S., Asamitsu, A., et al., Negative magnetoresistance in GaAs with magnetic MnAs nanoclusters, Appl. Phys. Lett., 1998, vol. 72, no. 25, pp. 3368–3370. https://doi.org/10.1063/1.121606

    Article  CAS  Google Scholar 

  8. Pashkova, O.N., Izotov, A.D., Sanygin, V.P., and Filatov, A.V., Cluster magnetism in doped InSb, Russ. J. Inorg. Chem., 2014, vol. 59, no. 7, pp. 688–691. https://doi.org/10.1134/S0036023614070183

    Article  CAS  Google Scholar 

  9. Pashkova, O.N., Izotov, A.D., Sanygin, V.P., and Filatov, A.V., Ferromagnetism of GaSb (2% Mn) Alloy, Russ. J. Inorg Khim., 2014, vol. 59, no. 11, pp. 1324–1327. https://doi.org/10.1134/S0036023614110187

    Article  CAS  Google Scholar 

  10. Kilanski, L., Fedorchenko, I.V., Gorska, M., et al., Magnetoresistance control in granular Zn1 – x yCdxMnyGeAs2 nanocomposite ferromagnetic semiconductors, J. Appl. Phys., 2015, vol. 118, no. 10, paper 103 906. https://doi.org/10.1063/1.4930047

  11. Fedorchenko, I.V., Kilanski, L., Zakharchuk, I., Geydt, P., Lahderanta, E., Vasiliev, P.N., Simonenko, N.P., Aronov, A.N., Dobrowolski, W., and Marenkin, S.F., Composites based on self-assembled MnAs ferromagnet nanoclusters embedded in ZnSnAs2 semiconductor, J. Alloys Compd., 2015, vol. 650, pp. 277–284. https://doi.org/10.1016/j.jallcom.2015.08.006

    Article  CAS  Google Scholar 

  12. Talantsev, A.D., Koplak, O.V., and Morgunov, R.B., Ferromagnetism and microwave magnetoresistance of GaMnSb films, Phys. Solid State, 2015, vol. 57, no. 2, pp. 322–330.

    Article  CAS  Google Scholar 

  13. Allwood, D.A., Gang, X., and Cowburn, R.P., Domain wall diodes in ferromagnetic planar nanowires, Appl. Phys. Lett., 2004, vol. 85, no. 14, pp. 2848–2850. https://doi.org/10.1063/1.1802388

    Article  CAS  Google Scholar 

  14. Tejada, J., Chudnovsky, E.M., Hernandez, J.M., and Spiller, T.P., Magnetic qubits as hardware for quantum computers, Nanotechnology, 2001, vol. 12, no. 2, pp. 181–186. https://doi.org/10.1088/0957-4484/12/2/323

    Article  CAS  Google Scholar 

  15. Tserkovnyak, Y. and Brataas, A., Enhanced Gilber damping in thin ferromagnetic films, Phys. Rev. Lett., 2002, vol. 88, no. 11, paper 117 601. https://doi.org/10.1103/PhysRevLett.88.117601

  16. Bason, Y., Klein, L., Yau, J.B., Hong, X., Hoffman, J., and Ahn, C.H., Planar Hall-effect magnetic random access memory, J. Appl. Phys., 2006, vol. 99, no. 8, paper 08R701. https://doi.org/10.1063/1.2162824

  17. Acet, M., Manosa, L., and Planes, A., Magnetic-field-induced effects in martensitic Heusler-based magnetic shape memory alloys, Handbook of Magnetic Materials, 2011, vol. 19, pp. 231–289. https://doi.org/10.1016/S1567-2719(11)19004-6

  18. Yarzhemsky, V.G., Murashov, S.V., and Izotov, A.D., Calculation of the electronic structure and exchange interaction in the InSb and GaAs semiconductors codoped with Mn and Ni, Inorg. Mater., 2017, vol. 53, no. 11, pp. 1131–1135. https://doi.org/10.1134/S0020168517110176

    Article  CAS  Google Scholar 

  19. Otto, M.J., Feil, H., van Woerden, R.A., Wijngaard, J., van der Valk, P.J., van Bruggen, C.F., and Haas, C., Electronic-structure and magnetic, electrical and optical-properties of ferromagnetic Heusler alloys, J. Magn. Magn. Mater., 1987, vol. 70, nos. 1–3, pp. 33–38. https://doi.org/10.1016/0304-8853(87)90354-4

    Article  CAS  Google Scholar 

  20. Kanomata, T., Shirakawa, K., and Kaneko, T., Effect of hydrostatic-pressure on the Curie-temperature of the Heusler alloys Ni2MnAl, Ni2MnGa, Ni2MnIn, Ni2MnSn and Ni2MnSb, J. Magn. Magn. Mater., 1987, vol. 65, pp. 76–82. https://doi.org/10.1016/0304-8853(87)90312-X

    Article  CAS  Google Scholar 

  21. Webster, P.J., Chemical order and magnetic properties of the Ni2 – xMnSb system, J. Magn. Magn. Mater., 1984, vol. 42, pp. 300–308. https://doi.org/10.1016/0304-8853(84)90113-6

    Article  CAS  Google Scholar 

  22. Hordequin, C., Lelievre-Bema, E., and Pierre, J., Magnetization density in the half-metallic ferromagnet NiMnSb, J. Phys. B, 1997, vols. 234–236, pp. 602–604. https://doi.org/10.1016/S0921-4526(96)01207-0

    Article  Google Scholar 

  23. Ivanov, V.A., Pashkova, O.N., Ugolkova, E.A., Sanygin, V.P., and Galera, R.M., Cluster ferromagnetism in Mn-doped InSb, Inorg. Mater., 2008, vol. 44, no. 10, pp. 1041–1046. https://doi.org/10.1134/S0020168508100026

    Article  CAS  Google Scholar 

  24. Stognei, O.V., Sitnikov, A.V., Kalinin, Yu.E., Avdeev, S.F., and Kopytin, M.N., Isotropic positive magnetoresistance in Co–Al2On nanocomposites, Phys. Solid State, 2007, vol. 49, no. 1, pp. 164–170.

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

We are grateful to A.V. Filatov and P.N. Vasil’ev for their assistance in the magnetic measurements.

Funding

This work was supported by the Russian Federation Ministry of Science and Higher Education (state research target for the Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, basic research).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. N. Pashkova.

Additional information

Translated by O. Tsarev

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pashkova, O.N., Izotov, A.D., Sanygin, V.P. et al. Ferromagnetism of Alloys Based on Mn- and Ni-Doped Indium Antimonide. Inorg Mater 55, 887–891 (2019). https://doi.org/10.1134/S0020168519090140

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0020168519090140

Keywords:

Navigation