Skip to main content
Log in

Effect of Bismuth Content on the Stability of (R,Bi)3(Fe,M)5O12 (R = Ln, Y; M = Ga, Al) Garnet Solid Solutions

  • Published:
Inorganic Materials Aims and scope

Abstract—

Published experimental data are used to assess the feasibility of adding bismuth to (R,Bi)3(Fe,M)5O12 (R = Ln, Y; M = Ga, Al) multicomponent solid solutions with the garnet structure using various synthesis techniques. We demonstrate that the existing approaches for producing (R,Bi)3(Fe,M)5O12 films and coatings are incapable of ensuring reproducibility of their chemical composition and phase stability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Jawahar, K. and Chouthary, R.N.P., Structural and dielectric properties of LaBi2Fe5O12, Indian J. Eng. Mater. Sci., 2008, vol. 15, pp. 203–206.

    CAS  Google Scholar 

  2. Hu, Q.-C., Chen, Y.-Q., Lu, P.-W., Huang, F., and Wang, X., Subsolidus phase relation in the Bi2O3–Fe2O3–La2O3 system, Chin. Phys. B, 2014, vol. 23, no. 2, paper 026 402.

  3. Chandra Sekhar, M. and Singh, M.R., Fabrication and characterization of bismuth–cerium composite iron garnet epitaxial films for magneto optical applications, J. Appl. Phys., 2012, vol. 112, paper 083 525.

  4. Lou, G., Kato, T., Iwata, S., and Ishibashi, T., Magneto-optical properties and magnetic anisotropy of Nd0.5Bi2.5Fe5 – yGayO12 thin films on glass substrates, Opt. Mater. Express, 2017, vol. 7, no. 7, pp. 2248–2259.

    Article  CAS  Google Scholar 

  5. Liu, H., Yuan, L., Wang, S., Du, Y., Zhang, Y., Hou, C., and Feng, S., In-situ optical and structural insight of reversible thermochromic materials of Sm3 – xBixFe5O12 (x = 0, 0.1, 0.3, 0.5), Dyes Pigments, 2017, vol. 145, pp. 418–426.

    Article  CAS  Google Scholar 

  6. Singh, L.N., Ferromagnetic resonance and relaxation studies in LPE-grown bismuth substituted europium iron garnet films, J. Magn. Magn. Mater., 2004, vols. 273–276, pp. 2244–2246.

    Article  CAS  Google Scholar 

  7. Durčok, S., Pollert, E., Šimša, Z., Hsu, J.-T., and Tsou, Y.-J., Growth of YIG and BiGdIG single crystals for magnetooptical applications, Mater. Chem. Phys., 1996, vol. 45, no. 2, pp. 124–129.

    Article  Google Scholar 

  8. Randoshkin, V.V., Kozlov, V.I., Mochar, V.Yu., Vasil’ev, N.V., and Voronov, V.V., Magnetic anisotropy of (100)- and (110)-oriented (Gd,Bi)3Fe5O12 films, Zh. Tekh. Fiz., 1997, vol. 67, no. 8, pp. 135–137.

    CAS  Google Scholar 

  9. Park, J. and Kim, C.S., Effects of bismuth substitution on Tb3 − xBixFe5O12, J. Appl. Phys., 2007, vol. 101, paper 09M915.

  10. Tamaki, T., Kaneda, H., and Kawamura, N., Magneto-optical properties of (TbBi)3Fe5012 and its application to a 1.5 μm wideband optical isolator, J. Appl. Phys., 1991, vol. 70, no. 8, pp. 4581–4583.

    Article  CAS  Google Scholar 

  11. Guillot, M., Le Gall, H., Desvignes, J.M., and Artinian, M., Analysis of the Dy contribution to the Faraday rotation of Bi-DyIG film, J. Appl. Phys., 1997, vol. 81, no. 8, pp. 5432–5434.

    Article  CAS  Google Scholar 

  12. Zhang, G.-Y., Xu, X.W., and Chong, T.-C., Faraday rotation spectra of bismuth-substituted rare-earth iron garnet crystals in optical communication band, J. Appl. Phys., 2004, vol. 95, no. 10, pp. 5267–5270.

    Article  CAS  Google Scholar 

  13. Park, J. and Kim, C.S., Structural and magnetic characteristics of bismuth substituted holmium iron garnet, Phys. Status Solidi B, 2007, vol. 244, no. 12, pp. 4562–4565.

    Article  CAS  Google Scholar 

  14. Watanabe, T., Aono, T., Tamaki, T., and Tsushima, K., Magneto-optical properties of (RBi)3Fe5O12 at 0.8 nm wavelength band, IEEE Trans. J. Magn. Jpn., 1989, vol. 4, no. 4, pp. 221–227.

    Article  Google Scholar 

  15. Hansen, P. and Tolksdorf, W., Magnetic and magneto-optic properties of bismuth-substituted thulium iron-garnet films, J. Appl. Phys., 1991, vol. 69, no. 8, pp. 4577–4579.

    Article  CAS  Google Scholar 

  16. Syvorotka, I.I., Syvorotka, I.M., and Ubizskii, S.B., Growth peculiarities and magnetic properties of (LuBi)3Fe5O12 films by LPE method, Solid State Phenom., 2013, vol. 200, pp. 256–260.

    Article  CAS  Google Scholar 

  17. Garzarella, A., Shinn, M.A., and Wu, Dong Ho, Effects of magnetically induced optical incoherence in arrayed Faraday rotator crystal, Appl. Phys Lett., 2015, vol. 106, paper 221 102.

  18. Quadri, S.B., Sanghera, S., Shinn, M., Wu, D.H., Bussman, K., and Amarasinghe, P., Structural and compositional inhomogeneities in bismuth-substituted rare earth iron garnet epitaxial films, Mater. Lett., 2017, vol. 207, pp. 25–28.

    Article  CAS  Google Scholar 

  19. Yoshimine, I., Satoh, T., Iida, R., Stupakiewicz, A., Maziewski, A., and Shimura, T., Phase-controllable spin wave generation in iron garnet by linearly polarized light pulses, J. Appl. Phys., 2014, vol. 116, paper 043 907.

  20. Xu, Z.C., Yan, M., Li, M., Zhang, Z.L., and Huang, M., Faraday rotation spectra analysis of Bi-substituted mixed rare-earth iron garnet crystals in optical communication band, J. Appl. Phys., 2007, vol. 101, paper 053 910.

  21. Li, X., Luo, Z., Bao, J., Gao, C., and Lu, Y., Combinatorial screening of the BiDyYb iron garnet material system for high Kerr rotation composition, IEEE Trans. Magn., 2008, vol. 44, no. 9, pp. 2091–2094.

    Article  Google Scholar 

  22. Kobayashi, H., Okuda, T., Kobayashi, N., Sakamoto, I., and Hayashi, N., Conversion electron Mössbauer study of the (Bi,Y)3Fe5O12 single-crystal films, J. Magn. Magn. Mater., 1992, vol. 115, pp. 255–259.

    Article  CAS  Google Scholar 

  23. Kim, Y.H., Kim, J.S., and Kim, S.I., Epitaxial growth and properties of Bi-substituted yttrium-iron-garnet films grown on (111) gadolinium-gallium-garnet substrates by using rf magnetron sputtering, J. Korean Phys. Soc., 2003, vol. 43, no. 3, pp. 400–405.

    CAS  Google Scholar 

  24. Veis, M., Lišková, E., Antoš, R., Višňovsky, Š., Kumar, N., Misra, D.S., Venkataramani, N., Prasad, S., and Krishnan, R., Polar and longitudinal magneto-optical spectroscopy of bismuth substituted yttrium iron garnet films grown by pulsed laser deposition, Thin Solid Films, 2011, vol. 519, pp. 8041–8046.

    Article  CAS  Google Scholar 

  25. Jesenska, E., Yoshida, T., Shinozaki, K., Ishibashi, T., Beran, L., Zahradnik, M., Antos, R., Kučera, M., and Veis, M., Optical and magneto-optical properties of Bi substituted yttrium iron garnets prepared by metal organic decomposition, Opt. Mater. Express, 2016, vol. 6, no. 6, pp. 1987–1997.

    Article  Google Scholar 

  26. Galstyan, O., Lee, H., Lee, S., Yoo, N., Park, J., Babajanyan, A., Friedman, B., and Lee, K., Effect of pre-crystallization on the preparation of thick Bi-YIG films by the metal-organic decomposition method, J. Magn. Magn. Mater., 2014, vol. 366, pp. 24–27.

    Article  CAS  Google Scholar 

  27. Lee, J.W., Oh, J.H., Lee, J.C., and Choi, S.C., Magneto-optical properties of Bi-YIG nanoparticles dispersed in the organic binder, J. Magn. Magn. Mater., 2004, vols. 272–276, pp. 2230–2232.

    Article  CAS  Google Scholar 

  28. Hong, R.Y., Wu, Y.J., Feng, B., Di, G.Q., Li, H.Z., Xu, B., Zheng, Y., and Wei, D.G., Microwave-assisted synthesis and characterization of Bi-substituted yttrium garnet nanoparticles, J. Magn. Magn. Mater., 2009, vol. 321, pp. 1106–1110.

    Article  CAS  Google Scholar 

  29. Jia, N., Huaiwu, Z., Li, J., Liao, Y., Jin, L., Liu, C., and Harris, V.C., Polycrystalline Bi substituted YIG ferrite processed via low temperature sintering, J. Alloys. Compd., 2017, vol. 695, pp. 931–936.

    Article  CAS  Google Scholar 

  30. Xu, H., Yang, H., Xu, W., and Yu, L., Magnetic properties of Bi-doped Y3Fe5O12 nanoparticles, Current Appl. Phys., 2008, vol. 8, no. 1, pp. 1–5.

    Article  Google Scholar 

  31. Niyaifar, M. and Mohammadpour, H., Study on magnetic role of Bi3+ ion by random cation distribution model in Bi–YIG system, J. Magn. Magn. Mater., 2015, vol. 395, pp. 65–70.

    Article  CAS  Google Scholar 

  32. Fu, Y.-P., Hung, D.-S., Cheng, C.-W., Tsai, F.-Y., and Yao, Y.-D., Non-isothermal crystallization kinetics and microwave properties of Bi0.75Y2.25Fe5O12 prepared by coprecipitation, Ceram. Int., 2009, vol. 35, no. 2, pp. 559–564.

    Article  CAS  Google Scholar 

  33. Niyaifar, M., Ramani, Radhakrishna, M.C., Mozaffari, M., Hasapour, A., and Amighan, J., Magnetic studies of BixY3 − xFe5O12 fabricated using conventional method, Hyperfine Interact., 2008, vol. 187, nos. 1–3, pp. 137–141.

    Article  CAS  Google Scholar 

  34. Pigošová, J., Cigáň, A., and Maňka, J., Thermal synthesis of bismuth-doped yttrium iron garnet for magneto-optical imaging, Meas. Sci. Rev., 2008, vol. 8, sect. 3, no. 5, pp. 126–128.

  35. Lee, H., Yoon, Y., Yoo, H., Choi, S.A., Kim, K., Choi, Y., Melikyan, H., Ishibashi, T., Friedman, B., and Lee, K., Magnetic and FTIR studies of BixY3 − xFe5O12 (x = 0, 1, 2) powders prepared by the metal organic decomposition method, J. Alloys Compd., 2011, vol. 509, pp. 9434–9440.

    Article  CAS  Google Scholar 

  36. Rehspringer, J.-L., Bursik, J., Niznansky, D., and Klarikova, A., Characterisation of bismuth-doped yttrium iron garnet layers prepared by sol–gel process, J. Magn. Magn. Mater., 2000, vol. 211, pp. 291–295.

    Article  CAS  Google Scholar 

  37. Hansen, P., Witter, K., and Tolksdorf, W., Magnetic and magneto-optic properties of bismuth- and aluminum-substituted iron garnet film, J. Appl. Phys., 1984, vol. 55, no. 4, pp. 1052–1061.

    Article  CAS  Google Scholar 

  38. Matsumoto, K., Sasaki, S., Haraga, K., Yamaguchi, K., and Fujii, T., Enhancement of magneto-optical Faraday rotation by bismuth substitution in bismuth and aluminum substituted yttrium-iron-garnet single-crystal films grown by coating gels, J. Appl. Phys., 1992, vol. 71, no. 5, pp. 2467–2469.

    Article  CAS  Google Scholar 

  39. Gomi, M., Tanida, T., and Abe, M., Rf sputtering of highly Bi-substituted garnet films on glass substrates for magneto-optic memory, J. Appl. Phys., 1985, vol. 57, no. 1, pp. 3888–3890.

    Article  CAS  Google Scholar 

  40. Cho, J., Gomi, M., and Abe, M., Bi-substituted iron garnet films with fine grains prepared by pyrolysis, J. Appl. Phys., 1991, vol. 70, no. 10, pp. 6301–6303.

    Article  CAS  Google Scholar 

  41. Kang, S., Yin, S., Adyam, Y., Li, Q., and Zhu, Y., Bi3Fe4Ga1O12 garnet properties and its application to ultrafast switching in the visible spectrum, IEEE Trans. Magn., 2007, vol. 43, no. 9, pp. 3656–3660.

    Article  CAS  Google Scholar 

  42. Adachi, N., Yogo, K., Ota, T., Takahashi, M., and Ishiyama, K., Magneto-optical effect and ferromagnetic resonance of Bi–Fe garnet for high frequency electromagnetic sensor, J. Appl. Phys., 2011, vol. 109, paper 07A506.

  43. Katagari, N., Adachi, N., Yogo, K., Watanabe, K., Awata, S., and Ota, T., Synthesis and magneto-optical properties of Bi3(FeGa)3O12 on glass substrate prepared by MOD technique, Trans. Mater. Res. Soc. Jpn., 2013, vol. 38, no. 2, pp. 269–272.

    Article  Google Scholar 

  44. Sapozhnikov, Yu.L., Berezin, I.L., Saksonov, Yu.G., and Fedorova, G.Ya., Physicochemical study of the Y3 – xBixFe5 – yGayO12–PbO–B2O3–Bi2O3 system, Izv. Akad, Nauk, Neorg. Mater., 1977, vol. 13, no. 4, pp. 684–687.

    CAS  Google Scholar 

  45. Okamura, Y., Nakamura, T., and Yamamoto, S., Influence of growth temperature on the optical properties of the (YBi)3(FeGa)5O12 film waveguides, Jpn. J. Appl. Phys., 1983, vol. 22, no. 9, pp. 1400–1403.

    Article  CAS  Google Scholar 

  46. Aichele, T., Lorenz, A., Hergt, R., and Gömert, P., Garnet layers prepared by liquid phase epitaxy for microwave and magneto-optical applications—a review, Cryst. Res. Technol., 2003, vol. 38, nos. 7–8, pp. 575–587.

    Article  CAS  Google Scholar 

  47. Gomi, M., Asogawa, M., and Abe, M., Magnetic and magneto-optic properties of Bi, Ga (or Al) substituted garnet films prepared by pyrolysis method, J. Magn. Soc. Jpn., 1986, vol. 10, no. 2, pp. 217–220.

    Article  CAS  Google Scholar 

  48. Ishibashi, T., Mizusava, A., Nagai, M., Mogi, T., Shimizu, S., Sato, K., Togashi, N., Mogi, T., Houchido, M., Sano, H., and Houchido, M., Characterization of epitaxial (Y,Bi)3(Fe,Ga)5O12 thin films grown by metal-organic decomposition method, J. Appl. Phys., 2005, vol. 97, paper 013 516.

  49. Kumar, P., Maydykovsky, A.I., Levy, M., Dubrovina, N.V., and Aktsipetrov, O.A., Second harmonic generation study of internally generated strain in bismuth-substituted iron garnet films, Opt. Express, 2010, vol. 18, no. 2, pp. 1076–1084.

  50. Smirnova, M.E., Nipan, G.D., and Nikiforova, G.E., (Y1 – xBix)3(Fe1 – yGay)5O12 solid solution region in the Ieneke diagram, Inorg. Mater., 2018, vol. 54, no. 7, pp. 683–688.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. N. Smirnova.

Additional information

Translated by O. Tsarev

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Smirnova, M.N., Nipan, G.D. Effect of Bismuth Content on the Stability of (R,Bi)3(Fe,M)5O12 (R = Ln, Y; M = Ga, Al) Garnet Solid Solutions. Inorg Mater 55, 687–691 (2019). https://doi.org/10.1134/S0020168519070197

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0020168519070197

Keywords:

Navigation