Skip to main content

Tin–Nickel–Titania Composite Coatings

Abstract

The effect of titania nanoparticles synthesized by direct oxidation of titanium powder on the cathodic polarization of the electrodeposition of Sn, Ni, and a Sn–Ni alloy in a fluoride–chloride electrolyte has been assessed using voltammetry. The morphology and phase composition of the coatings obtained have been studied by scanning electron microscopy and X-ray diffraction. The pH of the electrolyte has been shown to have a crucial effect on its stability and the quality of the coatings. The optimal pH of the electrolyte for the deposition process is 3.0 ± 0.1 and the optimal current density is 1.0 ± 0.1 A/dm2. The coprecipitation of nickel and tin into an alloy has been shown to be accompanied by a depolarization effect, due to the formation of NiSn2 and Ni3Sn2 intermetallic compounds. The addition of titanium dioxide shifts the alloy reduction process to more negative potentials. The addition of 2 g/L of titanium dioxide to an electrolyte leads to the incorporation of 0.7 wt % TiO2 into the composition of the coating.

This is a preview of subscription content, access via your institution.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

REFERENCES

  1. Park, N.-G., Van de Lagemaat, J., and Frank, A.J., Comparison of dye-sensitized rutile- and anatase-based TiO2 solar cells, J. Phys. Chem., 2000, vol. 104, no. 38, pp. 8989–8994.

    Article  CAS  Google Scholar 

  2. Smestad, G., Bignozzi, C., and Argazzi, R., Testing of dye sensitized TiO2 solar cells: I. Experimental photocurrent output and conversion efficiencies, Sol. Energy Mater. Sol. Cells, 1994, vol. 32, no. 3, pp. 259–272.

    Article  CAS  Google Scholar 

  3. Mills, A. and Le Hunte, S., An overview of semiconductor photocatalysis, J. Photochem. Photobiol., A, 1997, vol. 108, no. 1, pp. 1–35.

    Article  CAS  Google Scholar 

  4. Masoudi, M., Mashreghi, M., Goharshadi, E., and Meshkini, A., Multifunctional fluorescent titania nanoparticles: green preparation and applications as antibacterial and cancer theranostic agents, Artif. Cells Nanomed. Biotechnol., 2018, vol. 29:1-12, pp. 51–56.

  5. Hoffmann, M.R., Martin, S.T., Choi, W., et al., Environmental applications of semiconductor photocatalysis, Chem. Rev., 1995, vol. 95, pp. 69–96.

    Article  CAS  Google Scholar 

  6. Matsunaga, T., Tomoda, R., Nakajima, T., Nakamura, N., and Komine, T., Continuous-sterilization system that uses photosemiconductor powders, Appl. Environ. Microbiol., 1988, vol. 54, pp. 1330–1333.

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Chen, X.B. and Mao, S.S., Titanium dioxide nanomaterials: synthesis, properties, modifications, and application, Chem. Rev., 2007, vol. 107, no. 7, pp. 2891–2959.

    Article  CAS  PubMed  Google Scholar 

  8. Murashkevich, A.N., Alisienok, O.A., Zharskii, I.M., et al., The effect of the synthesis conditions of aluminum-modified nanosized titanium dioxide on the efficiency of its use in electrorheological dispersions, Colloid J., 2017, vol. 79, no. 1, pp. 87–93.

    Article  CAS  Google Scholar 

  9. Murashkevich, A.N., Alisienok, O.A., Maksimovskikh, A.I., and Fedorova, A.V., Synthesis and thermoanalytical study of SiO2–TiO2 composites modified with macrocyclic endoreceptors, Inorg. Mater., 2016, vol. 52, no. 3, pp. 294–300.

    Article  CAS  Google Scholar 

  10. Frade, T., Bouzon, V., Gomes, A., et al., Pulsed-reverse current electrodeposition of Zn and Zn–TiO2 nanocomposite films, Surf. Coat. Technol., 2010, vol. 204, pp. 3592–3598.

    Article  CAS  Google Scholar 

  11. Camargoa Magali, K., Tudelab Ignacio, Schmidta Udo, et al., Ultrasound assisted electrodeposition of Zn and Zn–TiO2 coatings, Electrochim. Acta, 2016, vol. 198, pp. 287–295.

    Article  CAS  Google Scholar 

  12. Katamipour, A., Farzam, M., Danaee, I., et al., Effects of sonication on anticorrosive and mechanical properties of electrodeposited Ni–Zn–TiO2 nanocomposite coatings, Surf. Coat. Technol., 2014, vol. 254, pp. 358–363.

    Article  CAS  Google Scholar 

  13. Gyftou, P., Pavlatou, E.A., and Spyrellis, N., Effect of pulse electrodeposition parameters on the properties of Ni/nano-SiC composites, Appl. Surf. Sci., 2008, vol. 254, pp. 5910–5916.

    Article  CAS  Google Scholar 

  14. Burzyńska, L., Rudnik, E., Koza, J., et al., Electrodeposition and heat treatment of nickel/silicon carbide composites, Surf. Coat. Technol., 2008, vol. 202, pp. 2545–2556.

    Article  CAS  Google Scholar 

  15. Thiemig, D. and Bund, A., Influence of ethanol on the electrocodeposition of Ni/Al2O3 nanocomposite films, Appl. Surf. Sci., 2009, vol. 255, pp. 4164–4170.

    Article  CAS  Google Scholar 

  16. Thiemig, D., Lange, R., and Bund, A., Influence of pulse plating parameters on the electrocodeposition of matrix metal nanocomposites, Electrochim. Acta, 2007, vol. 52, pp. 7362–7371.

    Article  CAS  Google Scholar 

  17. Fa-feng Xia, Meng-hua Wu, Fan Wang, et al., Nanocomposite Ni–TiN coatings prepared by ultrasonic electrodeposition, Curr. Appl. Phys., 2009, vol. 9, pp. 44–47.

    Article  Google Scholar 

  18. Gia Vu Pham, Anh Truc Trinh, Thi Xuan, Hang To, et al., Incorporation of Fe3O4/CNTs nanocomposite in an epoxy coating for corrosion protection of carbon steel, Adv. Nat. Sci.: Nanosci. Nanotechnol., 2014, vol. 5, pp. 035016–035022.

    Google Scholar 

  19. Ha, H.T., Anh, C.T., Ha, N.T., et al., Mechanical and corrosion resistance properties of TiO2 nanoparticles reinforced Ni coating by electrodeposition, J. Phys.: Conf. Ser., 2009, vol. 187, paper 012 083.

  20. Low, C.T.J., Wills, R.G.A., and Walsh, F.C., Electrodeposition of composite coatings containing nanoparticles in a metal deposit, Surf. Coat. Technol., 2006, vol. 201, pp. 371–383.

    Article  CAS  Google Scholar 

  21. Cayton, R.H., Nanoparticle composites for coating application, TechConnect Briefs, 2004, vol. 3, pp. 312–315.

    CAS  Google Scholar 

  22. Abdel Aal, A., Hard and corrosion resistant nanocomposite coating for Al alloy, Mater. Sci. Eng., A, 2008, vol. 474, pp. 181–187.

    Article  CAS  Google Scholar 

  23. Sadeghi, A., Khosroshahi, R., and Sadeghian, Z., Morphological, mechanical, corrosion and hydrogen permeation characteristics of Ni–nano-TiO2 composite coating compared to Ni electrodeposited on low carbon steel, J. Surf. Invest.: X-ray, Synchrotron Neutron Tech., 2011, vol. 5, no. 1, pp. 186–192.

    Article  CAS  Google Scholar 

  24. Ramalingam, S., Muralidharan, V.S., and Subramania, A., Electrodeposition and characterization of Cu–TiO2 nanocomposite coatings, J. Solid State Electrochem., 2009, vol. 13, pp. 1777–1783.

    Article  CAS  Google Scholar 

  25. Jing Ya, Ningning Yang, Fengjiao Hu, et al., Preparation and activity evaluation of TiO2/Cu–TiO2 composite catalysts, J. Sol–Gel Sci. Technol., 2015, vol. 73, pp. 322–331.

    Article  CAS  Google Scholar 

  26. Javaherian, Sh.Sh., Aghajani, H., and Mehdizadeh, P., Cu–TiO2 composite as fabricated by SHS method, Int. J. Self. Propag. High-Temp. Synth., 2014, vol. 23, no. 1, pp. 47–54.

    Article  CAS  Google Scholar 

  27. Sorkhe, Y.A., Aghajani, H., and Taghisadeh Tabrizi, A., Synthesis and characterisation of Cu–TiO2 nanocomposite produced by thermochemical process, Powder Metall., 2016, vol. 59, no. 2, pp. 107–111.

    Article  CAS  Google Scholar 

  28. Lixia Ying, Zhenghui Li, Wu Ke, et al., Effect of TiO2 sol on the microstructure and tribological properties of Cu–Sn coating, Rare Met. Mater. Eng., 2017, vol. 10, pp. 2801–2806.

    Google Scholar 

  29. Antikhovich, I.V., Chernik, A.A., Zharskii, I.M., and Bolvako A.K., Electrodeposition of a nickel coating from a low-temperature acetate–chloride nickel-plating electrolyte, Russ. J. Electrochem., 2015, vol. 51, no. 3, pp. 281–286.

    Article  CAS  Google Scholar 

  30. Antihovich, I.V., Ablazhey, N.M., Chernik, A.A., et al., Electrodeposition of nickel and composite nickel–fullerenol coatings from low-temperature sulphate–chloride–isobutyrate electrolyte, Proc. Chem., 2014, vol. 10, pp. 373–377.

    Article  CAS  Google Scholar 

  31. Antikhovich, I.V., Chernik, A.A., and Zharskii, I.M., Electrodeposition of nickel from an acetate–chloride electrolyte in the presence of ammonium acetate, Vestn. Belorussk. Gos. Univ., Ser. 2, 2014, no. 1, pp. 15–20.

  32. Maibach, H.I., Dannaker, C.J., and Lanti, A., Contact skin allergy, Allergy: Principles and Practice, Middleton, E, Jr. et al., Eds., St. Louis: Mosby, 1993, 4th ed., pp. 1605–2647.

  33. Dotterud, L.K. and Falk, E.S., Contact allergy in relation to hand eczema and atopic diseases in north Norwegian schoolchildren, Acta Pediatr., 1995, vol. 84, pp. 402–406.

    Article  CAS  Google Scholar 

  34. Lačnjevac, U.Č., Jović, V.D., and Jović, B.M., Electrodeposition and characterization of Ni–Sn alloy coatings as cathode material for hydrogen evolution reaction in alkaline solutions, Zastita Mater., 2011, vol. 52, pp. 153–158.

    Google Scholar 

  35. Bełtowska-Lehman, E. and Subiah, J., Kinetics of electrodeposition of Ni–Sn alloy deposits from an acid chloride bath, Surf. Technol., 1985, vol. 15, no. 3, pp. 191–198.

    Article  Google Scholar 

  36. Lačnjevac, U. and Jović, B.M., Electrodeposition of Ni, Sn and Ni–Sn alloy coatings from pyrophosphate–glycine bath, J. Electrochem. Soc., 2012, vol. 159, no. 5, pp. D310–D318.

    Article  Google Scholar 

  37. Vyacheslavov, P.M., Elektrokhimicheskoe osazhdenie splavov (Electrodeposition of Alloys), Leningrad: Mashinostroenie, 1986.

  38. Dasoyan, M.A., Pal’mskaya, I.Ya., and Sakharova, E.V., Tekhnologiya elektrokhimicheskikh pokrytii (Technology of Electrochemical Coatings), Leningrad: Mashinostroenie, 1989.

  39. Jalota, S.K., Tin–nickel alloy plating, Met. Finish, 1999, vol. 97, no. 1, pp. 319–322.

    Article  Google Scholar 

  40. Vorob’eva, T.N. and Kudako, A.A., Effect of conditions of deposition from a fluoride–chloride electrolyte on the composition, microstructure, and properties of Ni–Sn coatings produced by electrodeposition, Zh. Belorussk. Gos. Univ.: Khim., 2017, no. 2, pp. 28–35.

  41. Cuthbertson, J.W., Parkinson, N., and Rooksby, H.P., Electrodeposition of tin–nickel alloy plate from chloride–fluoride electrolytes, J. Electrochem. Soc., 1953, vol. 100, no. 3, pp. 107–119.

    Article  CAS  Google Scholar 

  42. Vinchentso, A. and Kavallotti, P.L., Structure and electrokinetic study of nickel electrodeposition, Russ. J. Electrochem., 2008, vol. 44, pp. 716–727.

    Article  CAS  Google Scholar 

  43. Kovalenko, I.V., Chernenko, L.V., Khainakov, S.A., Lysin, V.I., and Andriiko, A.A., Synthesis and physicochemical properties of titanium oxide, tin oxide, and tantalum oxide nanoparticles, Ukr. Khim. Zh., 2008, vol. 74, nos. 3–4, pp. 52–54.

    CAS  Google Scholar 

  44. Toshiaki, O., Fujio, I., and Yoshinori, F., Raman spectrum of anatase, TiO2, J. Raman Spectrosc., 1978, vol. 7, no. 6, pp. 321–324.

    Article  Google Scholar 

  45. Yang, L., Wu, W., and Zhao, Y., Effect of TiO2 particles on normal and resonance Raman spectra of Coumarin 343: a theoretical investigation, Phys. Chem. Chem. Phys., 2015, vol. 17, pp. 10 910–10 918.

Download references

ACKNOWLEDGMENTS

Dr. Izabela Bobowska and mgr. inz. A. Wrzesińska (Department of Molecular Physics, Lodz University of Technology, Lodz, Poland) are acknowledged for their help in performing the Raman measurements.

Funding

This research was supported by the Ministry of Education of the Republic of Belarus, grant no. 18-070: Fabrication of Tin–Nickel–Nanotitania Composite Coatings by Electrodeposition.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Pyanko.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Pyanko, A.V., Makarova, I.V., Kharitonov, D.S. et al. Tin–Nickel–Titania Composite Coatings. Inorg Mater 55, 568–575 (2019). https://doi.org/10.1134/S002016851906013X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S002016851906013X

Keywords:

  • fluoride–chloride electrolyte
  • polarization
  • microstructure
  • phase composition