Park, N.-G., Van de Lagemaat, J., and Frank, A.J., Comparison of dye-sensitized rutile- and anatase-based TiO2 solar cells, J. Phys. Chem., 2000, vol. 104, no. 38, pp. 8989–8994.
Article
CAS
Google Scholar
Smestad, G., Bignozzi, C., and Argazzi, R., Testing of dye sensitized TiO2 solar cells: I. Experimental photocurrent output and conversion efficiencies, Sol. Energy Mater. Sol. Cells, 1994, vol. 32, no. 3, pp. 259–272.
Article
CAS
Google Scholar
Mills, A. and Le Hunte, S., An overview of semiconductor photocatalysis, J. Photochem. Photobiol., A, 1997, vol. 108, no. 1, pp. 1–35.
Article
CAS
Google Scholar
Masoudi, M., Mashreghi, M., Goharshadi, E., and Meshkini, A., Multifunctional fluorescent titania nanoparticles: green preparation and applications as antibacterial and cancer theranostic agents, Artif. Cells Nanomed. Biotechnol., 2018, vol. 29:1-12, pp. 51–56.
Hoffmann, M.R., Martin, S.T., Choi, W., et al., Environmental applications of semiconductor photocatalysis, Chem. Rev., 1995, vol. 95, pp. 69–96.
Article
CAS
Google Scholar
Matsunaga, T., Tomoda, R., Nakajima, T., Nakamura, N., and Komine, T., Continuous-sterilization system that uses photosemiconductor powders, Appl. Environ. Microbiol., 1988, vol. 54, pp. 1330–1333.
CAS
PubMed
PubMed Central
Google Scholar
Chen, X.B. and Mao, S.S., Titanium dioxide nanomaterials: synthesis, properties, modifications, and application, Chem. Rev., 2007, vol. 107, no. 7, pp. 2891–2959.
Article
CAS
PubMed
Google Scholar
Murashkevich, A.N., Alisienok, O.A., Zharskii, I.M., et al., The effect of the synthesis conditions of aluminum-modified nanosized titanium dioxide on the efficiency of its use in electrorheological dispersions, Colloid J., 2017, vol. 79, no. 1, pp. 87–93.
Article
CAS
Google Scholar
Murashkevich, A.N., Alisienok, O.A., Maksimovskikh, A.I., and Fedorova, A.V., Synthesis and thermoanalytical study of SiO2–TiO2 composites modified with macrocyclic endoreceptors, Inorg. Mater., 2016, vol. 52, no. 3, pp. 294–300.
Article
CAS
Google Scholar
Frade, T., Bouzon, V., Gomes, A., et al., Pulsed-reverse current electrodeposition of Zn and Zn–TiO2 nanocomposite films, Surf. Coat. Technol., 2010, vol. 204, pp. 3592–3598.
Article
CAS
Google Scholar
Camargoa Magali, K., Tudelab Ignacio, Schmidta Udo, et al., Ultrasound assisted electrodeposition of Zn and Zn–TiO2 coatings, Electrochim. Acta, 2016, vol. 198, pp. 287–295.
Article
CAS
Google Scholar
Katamipour, A., Farzam, M., Danaee, I., et al., Effects of sonication on anticorrosive and mechanical properties of electrodeposited Ni–Zn–TiO2 nanocomposite coatings, Surf. Coat. Technol., 2014, vol. 254, pp. 358–363.
Article
CAS
Google Scholar
Gyftou, P., Pavlatou, E.A., and Spyrellis, N., Effect of pulse electrodeposition parameters on the properties of Ni/nano-SiC composites, Appl. Surf. Sci., 2008, vol. 254, pp. 5910–5916.
Article
CAS
Google Scholar
Burzyńska, L., Rudnik, E., Koza, J., et al., Electrodeposition and heat treatment of nickel/silicon carbide composites, Surf. Coat. Technol., 2008, vol. 202, pp. 2545–2556.
Article
CAS
Google Scholar
Thiemig, D. and Bund, A., Influence of ethanol on the electrocodeposition of Ni/Al2O3 nanocomposite films, Appl. Surf. Sci., 2009, vol. 255, pp. 4164–4170.
Article
CAS
Google Scholar
Thiemig, D., Lange, R., and Bund, A., Influence of pulse plating parameters on the electrocodeposition of matrix metal nanocomposites, Electrochim. Acta, 2007, vol. 52, pp. 7362–7371.
Article
CAS
Google Scholar
Fa-feng Xia, Meng-hua Wu, Fan Wang, et al., Nanocomposite Ni–TiN coatings prepared by ultrasonic electrodeposition, Curr. Appl. Phys., 2009, vol. 9, pp. 44–47.
Article
Google Scholar
Gia Vu Pham, Anh Truc Trinh, Thi Xuan, Hang To, et al., Incorporation of Fe3O4/CNTs nanocomposite in an epoxy coating for corrosion protection of carbon steel, Adv. Nat. Sci.: Nanosci. Nanotechnol., 2014, vol. 5, pp. 035016–035022.
Google Scholar
Ha, H.T., Anh, C.T., Ha, N.T., et al., Mechanical and corrosion resistance properties of TiO2 nanoparticles reinforced Ni coating by electrodeposition, J. Phys.: Conf. Ser., 2009, vol. 187, paper 012 083.
Low, C.T.J., Wills, R.G.A., and Walsh, F.C., Electrodeposition of composite coatings containing nanoparticles in a metal deposit, Surf. Coat. Technol., 2006, vol. 201, pp. 371–383.
Article
CAS
Google Scholar
Cayton, R.H., Nanoparticle composites for coating application, TechConnect Briefs, 2004, vol. 3, pp. 312–315.
CAS
Google Scholar
Abdel Aal, A., Hard and corrosion resistant nanocomposite coating for Al alloy, Mater. Sci. Eng., A, 2008, vol. 474, pp. 181–187.
Article
CAS
Google Scholar
Sadeghi, A., Khosroshahi, R., and Sadeghian, Z., Morphological, mechanical, corrosion and hydrogen permeation characteristics of Ni–nano-TiO2 composite coating compared to Ni electrodeposited on low carbon steel, J. Surf. Invest.: X-ray, Synchrotron Neutron Tech., 2011, vol. 5, no. 1, pp. 186–192.
Article
CAS
Google Scholar
Ramalingam, S., Muralidharan, V.S., and Subramania, A., Electrodeposition and characterization of Cu–TiO2 nanocomposite coatings, J. Solid State Electrochem., 2009, vol. 13, pp. 1777–1783.
Article
CAS
Google Scholar
Jing Ya, Ningning Yang, Fengjiao Hu, et al., Preparation and activity evaluation of TiO2/Cu–TiO2 composite catalysts, J. Sol–Gel Sci. Technol., 2015, vol. 73, pp. 322–331.
Article
CAS
Google Scholar
Javaherian, Sh.Sh., Aghajani, H., and Mehdizadeh, P., Cu–TiO2 composite as fabricated by SHS method, Int. J. Self. Propag. High-Temp. Synth., 2014, vol. 23, no. 1, pp. 47–54.
Article
CAS
Google Scholar
Sorkhe, Y.A., Aghajani, H., and Taghisadeh Tabrizi, A., Synthesis and characterisation of Cu–TiO2 nanocomposite produced by thermochemical process, Powder Metall., 2016, vol. 59, no. 2, pp. 107–111.
Article
CAS
Google Scholar
Lixia Ying, Zhenghui Li, Wu Ke, et al., Effect of TiO2 sol on the microstructure and tribological properties of Cu–Sn coating, Rare Met. Mater. Eng., 2017, vol. 10, pp. 2801–2806.
Google Scholar
Antikhovich, I.V., Chernik, A.A., Zharskii, I.M., and Bolvako A.K., Electrodeposition of a nickel coating from a low-temperature acetate–chloride nickel-plating electrolyte, Russ. J. Electrochem., 2015, vol. 51, no. 3, pp. 281–286.
Article
CAS
Google Scholar
Antihovich, I.V., Ablazhey, N.M., Chernik, A.A., et al., Electrodeposition of nickel and composite nickel–fullerenol coatings from low-temperature sulphate–chloride–isobutyrate electrolyte, Proc. Chem., 2014, vol. 10, pp. 373–377.
Article
CAS
Google Scholar
Antikhovich, I.V., Chernik, A.A., and Zharskii, I.M., Electrodeposition of nickel from an acetate–chloride electrolyte in the presence of ammonium acetate, Vestn. Belorussk. Gos. Univ., Ser. 2, 2014, no. 1, pp. 15–20.
Maibach, H.I., Dannaker, C.J., and Lanti, A., Contact skin allergy, Allergy: Principles and Practice, Middleton, E, Jr. et al., Eds., St. Louis: Mosby, 1993, 4th ed., pp. 1605–2647.
Dotterud, L.K. and Falk, E.S., Contact allergy in relation to hand eczema and atopic diseases in north Norwegian schoolchildren, Acta Pediatr., 1995, vol. 84, pp. 402–406.
Article
CAS
Google Scholar
Lačnjevac, U.Č., Jović, V.D., and Jović, B.M., Electrodeposition and characterization of Ni–Sn alloy coatings as cathode material for hydrogen evolution reaction in alkaline solutions, Zastita Mater., 2011, vol. 52, pp. 153–158.
Google Scholar
Bełtowska-Lehman, E. and Subiah, J., Kinetics of electrodeposition of Ni–Sn alloy deposits from an acid chloride bath, Surf. Technol., 1985, vol. 15, no. 3, pp. 191–198.
Article
Google Scholar
Lačnjevac, U. and Jović, B.M., Electrodeposition of Ni, Sn and Ni–Sn alloy coatings from pyrophosphate–glycine bath, J. Electrochem. Soc., 2012, vol. 159, no. 5, pp. D310–D318.
Article
Google Scholar
Vyacheslavov, P.M., Elektrokhimicheskoe osazhdenie splavov (Electrodeposition of Alloys), Leningrad: Mashinostroenie, 1986.
Dasoyan, M.A., Pal’mskaya, I.Ya., and Sakharova, E.V., Tekhnologiya elektrokhimicheskikh pokrytii (Technology of Electrochemical Coatings), Leningrad: Mashinostroenie, 1989.
Jalota, S.K., Tin–nickel alloy plating, Met. Finish, 1999, vol. 97, no. 1, pp. 319–322.
Article
Google Scholar
Vorob’eva, T.N. and Kudako, A.A., Effect of conditions of deposition from a fluoride–chloride electrolyte on the composition, microstructure, and properties of Ni–Sn coatings produced by electrodeposition, Zh. Belorussk. Gos. Univ.: Khim., 2017, no. 2, pp. 28–35.
Cuthbertson, J.W., Parkinson, N., and Rooksby, H.P., Electrodeposition of tin–nickel alloy plate from chloride–fluoride electrolytes, J. Electrochem. Soc., 1953, vol. 100, no. 3, pp. 107–119.
Article
CAS
Google Scholar
Vinchentso, A. and Kavallotti, P.L., Structure and electrokinetic study of nickel electrodeposition, Russ. J. Electrochem., 2008, vol. 44, pp. 716–727.
Article
CAS
Google Scholar
Kovalenko, I.V., Chernenko, L.V., Khainakov, S.A., Lysin, V.I., and Andriiko, A.A., Synthesis and physicochemical properties of titanium oxide, tin oxide, and tantalum oxide nanoparticles, Ukr. Khim. Zh., 2008, vol. 74, nos. 3–4, pp. 52–54.
CAS
Google Scholar
Toshiaki, O., Fujio, I., and Yoshinori, F., Raman spectrum of anatase, TiO2, J. Raman Spectrosc., 1978, vol. 7, no. 6, pp. 321–324.
Article
Google Scholar
Yang, L., Wu, W., and Zhao, Y., Effect of TiO2 particles on normal and resonance Raman spectra of Coumarin 343: a theoretical investigation, Phys. Chem. Chem. Phys., 2015, vol. 17, pp. 10 910–10 918.