Skip to main content
Log in

Ru-Containing Catalysts for Methanol and Ethanol Steam Reforming in Conventional and Membrane Reactors

  • Published:
Inorganic Materials Aims and scope

Abstract

We have carried out a comparative study of the catalytic activity of nanostructured M–Ru (M = Pt, Pd, Rh) bimetallic catalysts supported on detonation nanodiamond (DND) for methanol steam reforming (MSR) and ethanol steam reforming (ESR) processes in a conventional and a membrane reactor. The catalysts have been characterized by X-ray diffraction, transmission electron microscopy, and BET measurements. In the ESR process, the highest hydrogen yield is ensured by the Pt–Ru/DND catalyst, whereas the Ru–Rh/DND catalyst exhibits the highest activity for the MSR reaction. Our results demonstrate that, if the processes in question are run in a membrane reactor with a Pd–Ru membrane, there is a stable hydrogen flow, free of CO and other impurities, in the permeate zone even at temperatures on the order of 400°C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.

Similar content being viewed by others

REFERENCES

  1. Stenina, I.A., Safronova, E.Yu., Levchenko, A.V., Dobrovol’skii, Yu.A., and Yaroslavtsev, A.B., Low-temperature fuel cells: outlook for application in energy storage systems and materials for their development, Therm. Eng., 2016, no. 6, pp. 385–398.

  2. Basile, A., Iulianelli, A., Longo, T., Liguori, S., and Falco, M., Pd-based selective membrane state-of the-art, Membrane Reactors for Hydrogen Production Processes, Marrelli, L. , Eds., New York: Springer, 2011, chapter 2, pp. 21–55.

    Google Scholar 

  3. Basov, N.L., Ermilova, M.M., Orekhova, N.V., and Yaroslavtsev, A.B., Membrane catalysis in dehydrogenation and hydrogen production processes, Usp. Khim., 2013, vol. 82, no. 4, pp. 352–368.

    Article  CAS  Google Scholar 

  4. Piskin, F. and Öztürk, T., Combinatorial screening of Pd–Ag–Ni membranes for hydrogen separation, J. Membr. Sci., 2017, vol. 524, pp. 631–636.

    Article  CAS  Google Scholar 

  5. Barbir, F., PEM Fuel Cells: Theory and Practice, Amsterdam: Elsevier, 2013.

    Google Scholar 

  6. Olah, G.A., Goeppert, A., and Surya Prakash, G.K., Beyond Oil and Gas: The Methanol Economy, Weinheim: Wiley–VCH, 2009, 2nd ed.

    Book  Google Scholar 

  7. Palo, R.A., Dagle, D.R., and Holladay, J.D., Methanol steam reforming for hydrogen production, Chem. Rev., 2007, vol. 107, pp. 3992–4021.

    Article  CAS  PubMed  Google Scholar 

  8. Frusteri, F. and Bonura, G., Hydrogen production by reforming of bio-alcohols, Compendium of Hydrogen Energy. Hydrogen Production and Purification, Subramani, V. et al., Eds., Cambridge: Woodhead, 2015.

    Google Scholar 

  9. Chitsazana, S., Sepehria, S., Garbarinoa, G., Carnascialic, M.M., and Busca, G., Steam reforming of biomass-derived organics: interactions of different mixture components on Ni/Al2O3 based catalysts, Appl. Catal., A, 2016, vol. 187, pp. 386–398.

  10. Tsodikov, M.V., Fedotov, A.S., Antonov, D.O., Uvarov, V.I., Bychkov, V.Yu., and Luck, F.C., Hydrogen and syngas production by dry reforming of fermentation products on porous ceramic membrane-catalytic converters, Int. J. Hydrogen Energy, 2016, vol. 41, pp. 2424–2431.

    Article  CAS  Google Scholar 

  11. Connolly, D., Mathiesen, B.V., and Ridjan, I., A comparison between renewable transport fuels that can supplement or replace biofuels in a 100% renewable energy system, Energy, 2014, vol. 73, pp. 110–125.

    Article  Google Scholar 

  12. Lytkina, A.A., Orekhova, N.V., and Yaroslavtsev, A.B., Catalysts for the steam reforming and electrochemical oxidation of methanol, Inorg. Mater., 2018, vol. 54, no. 13, pp. 1–15. https://doi.org/10.1134/S0020168518130034

    Article  Google Scholar 

  13. Sharma, Y.C., Kumar, A., Prasad, R., and Upadhyay, S.N., Ethanol steam reforming for hydrogen production: latest and effective catalyst modification strategies to minimize carbonaceous deactivation, Renew. Sust. Energy Rev., 2017, vol. 74, pp. 89–103.

    Article  CAS  Google Scholar 

  14. Liu, X., Men, Y., Wang, J., He, R., and Wang, Y., Remarkable support effect on the reactivity of Pt/In2O3/MOx catalysts for methanol steam reforming, J. Power Sources, 2017, vol. 364, pp. 341–350.

    Article  CAS  Google Scholar 

  15. Kulakova, I.I., Surface chemistry of nanodiamonds, Phys. Solid State, 2004, vol. 46, no. 4, pp. 636–643.

    Article  CAS  Google Scholar 

  16. Makarshin, L.L. and Parmon, V.N., Microchannel catalytic systems for hydrogen energy development, Ross. Khim. Zh., 2006, vol. 50, pp. 19–25.

    CAS  Google Scholar 

  17. Iulianelli, A., Ribeirinha, P., Mendes, A., and Basile, A., Methanol steam reforming for hydrogen generation via conventional and membrane reactors: a review, Renew. Sust. Energy Rev., 2014, vol. 24, pp. 355–368.

    Article  CAS  Google Scholar 

  18. Ievlev, V.M., Dontsov, A.I., Belonogov, E.K., Kannykin, S.V., and Solntsev, K.A., α ⇆ β phase transformations in rolled foil of the Pd–57 at % Cu solid solution, Inorg. Mater., 2017, vol. 53, no. 11, pp. 1163–1169.

    Article  CAS  Google Scholar 

  19. Mironova, E.Yu., Lytkina, A.A., Ermilova, M.M., Efimov, M.N., Zemtsov, L.M., Orekhova, N.V., Karpacheva, G.P., Bondarenko, G.N., Muraviev, D.N., and Yaroslavtsev, A.B., Ethanol and methanol steam reforming on transition metal catalysts supported on detonation synthesis nanodiamonds for hydrogen production, Int. J. Hydrogen Energy, 2015, vol. 40, pp. 3557–3565.

    Article  CAS  Google Scholar 

  20. Sharma, R., Kumar, A., and Upadhyay, R.K., Performance comparison of methanol steam reforming integrated to Pd–Ag membrane: membrane reformer vs. membrane separator, Separation Purificat. Technol., 2017, vol. 183, pp. 194–203.

    Article  CAS  Google Scholar 

  21. Espinal, R., Anzola, A., Adrover, E., Roig, M., Chimentao, R., Medina, F., Lopez, E., Borio, D., and Liorca, J., Durable ethanol steam reforming in a catalytic membrane reactor at moderate temperature over cobalt hydrotalcite, Int. J. Hydrogen Energy, 2014, vol. 39, pp. 10 902–10 919.

  22. Barrios, C.E., Bosco, V., Baltanas, M.A., and Bonivardi, A.L., Hydrogen production by methanol steam reforming: catalytic performance of supported-Pd on zinc–cerium oxides nanocomposites, Appl. Catal., B, 2015, vol. 179, pp. 262–275.

    Article  CAS  Google Scholar 

  23. Iulianelli, A., Liguori, S., Vita, A., Italiano, C., Fabiano, C., Huang, Y., and Basile, A., The on coming energy vector: hydrogen production in Pd-composite membrane reactor via bioethanol reforming over Ni/CeO2 catalyst, Catal. Today, 2016, vol. 259, pp. 368–375.

    Article  CAS  Google Scholar 

  24. Rahimpour, M.R., Samimi, F., Babapoor, A., Tohidian, T., and Mohebi, S., Palladium membrane applications in reaction systems for hydrogen separation and purification: a review, Chem. Eng. Process., 2017, vol. 121, pp. 24–49.

    Article  CAS  Google Scholar 

  25. Spallina, V., Matturro, G., Ruocco, C., Meloni, E., Palma, V., Fernandez, E., Melendez, J., Pacheco Tanaka, A.D., Viviente Sole, J.L., and van Sint Annaland, M., Direct route ethanol to pure hydrogen through autothermal reforming in a membrane reactor: experimental demonstration, reactor modeling and design, Energy, 2018, vol. 143, pp. 666–681.

    Article  CAS  Google Scholar 

  26. Efimov, M.N., Mironova, E.Yu., Dzidziguri, E.L., and Bondarenko, G.N., Formation of nanoparticles of platinum group metal alloys in composites based on nanodiamonds, Russ. J. Phys. Chem. A, 2014, vol. 88, no. 10, pp. 1739–1744.

    Article  CAS  Google Scholar 

  27. Novikova, S.A., Yurkov, G.Yu., and Yaroslavtsev, A.B., Synthesis and transport properties of membrane materials with incorporated metal nanoparticles, Mendeleev Commun., 2010, vol. 20, no. 2, pp. 89–91.

    Article  CAS  Google Scholar 

  28. Bilal, M. and Jackson, S.D., Ethanol steam reforming over Pt/Al2O3 and Rh/Al2O3 catalysts: the effect of impurities on selectivity and catalyst deactivation, Appl. Catal., A, 2017, no. 529, pp. 98–107.

  29. Bosko, M.L., Ferreira, N., Catena, A., Moreno, M.S., and Cornaglia, L., Catalytic behavior of Ru nanoparticles supported on carbon fibers for the ethanol steam reforming reaction, Catal. Commun., 2018, vol. 114, pp. 19–23.

    Article  CAS  Google Scholar 

  30. Bondarenko, G.N., Ermilova, M.M., Efimov, M.N., Zemtsov, L.M., Karpacheva, G.P., Mironova, E.Yu., Orekhova, N.V., Rodionov, A.S., and Yaroslavtsev, A.B., In situ IR-spectroscopy study of ethanol steam reforming in the presence of Pt–Ru/DND nanocatalysts, Nanotechnol. Russ., 2017, vol. 12, nos. 5–6, pp. 315–325.

    Article  CAS  Google Scholar 

  31. Gasteiger, H.A., Markovic, N., Ross, P.N., and Cairs, E.J., CO electrooxidation on well-characterized Pt–Ru alloys, J. Phys. Chem., 1994, vol. 98, pp. 617–625.

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

In our studies, we used equipment at the Novel Petrochemical Processes, Polymer Composites, and Adhesives Shared Research Facilities Center, Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences.

Funding

This work was supported by the Russian Science Foundation, grant no. 17-08-00811.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Lytkina.

Additional information

Translated by O. Tsarev

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lytkina, A.A., Mironova, E.Y., Orekhova, N.V. et al. Ru-Containing Catalysts for Methanol and Ethanol Steam Reforming in Conventional and Membrane Reactors. Inorg Mater 55, 547–555 (2019). https://doi.org/10.1134/S0020168519060104

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0020168519060104

Keywords:

Navigation