Skip to main content
Log in

Thermolysis of Hydrated Antimony Pentoxide

  • Published:
Inorganic Materials Aims and scope

Abstract

The thermolysis of hydrated antimony pentoxide (HAP) has been studied in the temperature range from 25 to 1000°C using a variety of experimental techniques: thermogravimetry, X-ray diffraction, pycnometry, elemental microanalysis, and mass spectrometry. The composition and structure of the forming phases have been determined. It has been shown that the initial stages of HAP thermolysis, in the temperature range 24–500°C, include dehydration processes and the formation of anhydrous antimony pentoxide, Sb2O5. At temperatures above 500°C, the process includes oxygen removal, the reduction of Sb(V) to Sb(III), and the formation of Sb6O13 and Sb2O4. The pyrochlore structure of HAP (sp. gr. Fd3m) has been shown to persist in the course of the phase transformations at temperatures below 700°C. Analysis of our experimental data has allowed us to propose a model for crystallographic site occupancies in the pyrochlore-type structure of the phases obtained and determine their temperature stability ranges.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Abe, M., Tsuji, M., and Kimura, N., Synthetic inorganic ion-exchange materials: 31. Ion-exchange behavior of tervalent metals and rare earth elements on crystalline antimonic (V) acid cation exchanger, Bull. Chem. Soc. Jpn., 1981, vol. 54, pp. 130–134. https://doi.org/10.1246/bcsj.54.130

    Article  CAS  Google Scholar 

  2. Belinskaya, F.A. and Militsina, E.A., Inorganic ion-exchange materials based on insoluble antimony(V) compounds, Russ. Chem. Rev., 1980, vol. 49, no. 10, pp. 933–952.

    Article  Google Scholar 

  3. Ozawa, Y., Miura, N., Yamazoe, N., and Sieyama, T., Proton conduction in antimonic acid at medium temperatures in the presence of water vapor, Chem. Lett., 1983, no. 10, pp. 1569–1572. https://doi.org/10.1246/cl.1983.1569

  4. Chowdhary, V., Barkley, J.R., English, A., and Sleight, E.I., New inorganic proton conductors, Mater. Res. Bull., 1982, vol. 17, no. 7, pp. 917–983. https://doi.org/10.1016/0025-5408(82)90013-7

    Article  Google Scholar 

  5. Neustroev, A.S., Zakhar’evich, D.A., and Chernov, V.M., Nuclear magnetic relaxation of protons in “polyantimonic acid–phosphate” composites, Russ. J. Electrochem., 2016, vol. 52, no. 7, pp. 685–689. https://doi.org/10.1134/S1023193516070132

    Article  CAS  Google Scholar 

  6. Chen, J., Chen, Z., Zhang, X., Li, X., Yu, L., and Li, D., Antimony oxide hydrate (Sb2O5 · 3H2O) as a simple and high efficient photocatalyst for oxidation of benzene, Appl. Catal., B, 2018, vol. 210, pp. 379–385. https://doi.org/10.1016/j.apcatb.2017.04.004

    Article  CAS  Google Scholar 

  7. Moller, T., Harjula, R., Kelokaski, P., Vaaramaa, K., Karhu, P., and Lehto, J., Titanium antimonates in various Ti : Sb ratios: ion exchange properties for radionuclide ions, J. Mater. Chem., 2003, vol. 13, pp. 535–541. https://doi.org/10.1039/B207028F

    Article  Google Scholar 

  8. Sivaiah, M.V., Venkatesan, K.A., Krishna, R.M., Sasidhar, P., and Murthy, G.S., Ion exchange properties of strontium on in situ precipitated polyantimonic acid in Amberlite XAD-7, Sep. Purif. Technol., 2005, vol. 44, pp. 1–9. https://doi.org/10.1016/j.seppur.2004.03.016

    Article  CAS  Google Scholar 

  9. Girardi, F. and Sabbioni, E., Selective removal of radio-sodium from neutron-activated materials by retention on hydrated antimony pentoxide, J. Radioanal. Chem., 1968, vol. 1, no. 2, pp. 169–178. https://doi.org/10.1007/BF02530237

    Article  CAS  Google Scholar 

  10. Prikhno, I.A., Ivanova, K.A., Don, G.M., and Yaroslavtsev, A.B., Hybrid membranes based on short side chain perfluorinated sulfonic acid membranes (Inion) and heteropoly acid salts, Mendeleev Commun., 2018, vol. 28, no. 6, pp. 657–658. https://doi.org/10.1016/j.mencom.2018.11.033

    Article  CAS  Google Scholar 

  11. Golubenko, D.V., Karavanova, Yu.A., Melnikov, S.S., Achoh, A.R., Pourcelly, G., and Yaroslavtsev, A.B., An approach to increase the permselectivity and mono-valent ion selectivity of cation-exchange membranes by introduction of amorphous zirconium phosphate nanoparticles, J. Membr. Sci., 2018, vol. 563, pp. 777–784. https://doi.org/10.1016/j.memsci.2018.06.024

    Article  CAS  Google Scholar 

  12. Luo, T., Abdu, S., and Wessling, M., Selectivity of ion exchange membranes: a review, J. Membr. Sci., 2018, vol. 555, pp. 429–454. https://doi.org/10.1016/j.memsci.2018.03.051

    Article  CAS  Google Scholar 

  13. Safronova, E.Yu. and Yaroslavtsev, A.B., Prospects of practical application of hybrid membranes, Membr. Membr. Tekhnol., 2016, vol. 6, no. 1, pp. 3–16. https://doi.org/10.1134/S2218117216010089

    Article  Google Scholar 

  14. Stenina, I.A. and Yaroslavtsev, A.B., Low- and intermediate-temperature proton-conducting electrolytes, Inorg. Mater., 2017, vol. 53, no. 3, pp. 253–262. https://doi.org/10.1134/S0020168517030104

    Article  CAS  Google Scholar 

  15. Ponomarev, A.N., Abdrashitov, E.F., Kritskaya, D.A., Bokun, V.Ch., Sanginov, E.A., and Dobrovol’skii, Yu.A., Synthesis of polymer nanocomposite ion-exchange membranes from sulfonated polystyrene and study of their properties, Russ. J. Electrochem., 2017, vol. 53, no. 6, pp. 589–607. https://doi.org/10.1134/S1023193517060143

    Article  CAS  Google Scholar 

  16. Himamaheswara Raoa, V., Syam Prasada, P., Venkateswara Raob, P., Santosc Luís, F., and Veeraiah, N., Influence of Sb2O3 on tellurite based glasses for photonic applications, J. Alloys Compd., 2016, vol. 687, pp. 898–905. https://doi.org/10.1016/j.jallcom.2016.06.256

    Article  CAS  Google Scholar 

  17. Orosel, D., Balog, P., Liu, H., Qian, J., and Jansen, M., Sb2O4 at high pressures and high temperatures, J. Solid State Chem., 2005, vol. 178, no. 9, pp. 2602–2607. https://doi.org/10.1016/j.jssc.2005.05.037

    Article  CAS  Google Scholar 

  18. Simon, A. and Thaler, E., Beiträge zur Kenntnis von Oxyden. Zur Kenntnis der Oxyde des Antimons, Z. Anorg. Allg. Chem., 1927, vol. 162, no. 1, pp. 253–278. https://doi.org/10.1002/zaac.19271620125

    Article  CAS  Google Scholar 

  19. Stewart, D.J., Knop, O., Ayasse, C., and Woodhams, F.W., Pyrochlores. VII. The oxides of antimony: an X-ray and Mössbauer study, Can. J. Chem., 1972, vol. 50, pp. 690–700. https://doi.org/10.1139/v72-106

    Article  CAS  Google Scholar 

  20. Molodtsova, V.V., Tarasova, D.V., Dzis’ko, V.A., Karakchiev, L.G., Olen’kova, I.P., and Shkarin, A.V., Effect of preparation conditions on the surface area and phase composition of antimony oxide-based catalysts: II. Calcined antimony oxides, Kinet. Katal., 1972, vol. 13, no. 5, pp. 1258–1268.

    CAS  Google Scholar 

  21. Abe, M. and Sudoh, K., Synthetic inorganic ion-exchange materials–XXIII: Ion-exchange equilibria of transition metals and hydrogen ions on crystalline antimonic(V) acid, J. Inorg. Nucl. Chem., 1980, vol. 42, no. 7, pp. 1051–1055. https://doi.org/10.1016/0022-1902(80)80399-X

    Article  CAS  Google Scholar 

  22. Kleshchev, D.G., Mechanism of phase transformations involved in hydrous pentoxide thermolysis in the range 470–730 K, Izv. Akad. Nauk SSSR, Neorg. Mater., 1987, vol. 23, no. 7, pp. 1173–1176.

    Google Scholar 

  23. Trofimov, V.G., Sheinkman, A.I., and Kleshchev, G.V., On crystalline antimony pentoxide, Zh. Strukt. Khim., 1973, vol. 14, no. 2, pp. 275–279.

    CAS  Google Scholar 

  24. Klestchov, D., Burmistrov, V., Sheinkman, A., and Pletnev, R., Composition and structure of phases formed in the process of hydrated antimony pentoxide thermolysis, J. Solid State Chem., 1991, vol. 94, no. 2, pp. 220–226. https://doi.org/10.1016/0022-4596(91)90186-L

    Article  Google Scholar 

  25. Lupitskaya, Yu.A., Kalganov, D.A., and Klyueva, M.V., Formation of compounds in the Ag2O–Sb2O3–MoO3 system on heating, Inorg. Mater., 2018, vol. 54, no. 3, pp. 240–244. https://doi.org/10.1134/S0020168518030081

    Article  CAS  Google Scholar 

  26. Egorysheva, A.V., Ellert, O.G., Gaitko, O.M., Brekhovskikh, M.N., Zhidkova, I.A., and Maksimov, Yu.V., Fluorination of Bi1.8Fe1.2SbO7 pyrochlore solid solutions, Inorg. Mater., 2017, vol. 53, no. 9, pp. 962–968. https://doi.org/10.1134/S0020168517090072

    Article  CAS  Google Scholar 

  27. Tolchev, A.V., Burmistrov, V.A., Kleshchev, D.G., and Lopushan, V.I., Closed-space thermolysis of hydrous crystalline polyantimonic acid, Inorg. Mater., 2003, vol. 39, no. 3, pp. 276–279.

    Article  CAS  Google Scholar 

  28. Posel’skaya, Yu.V., Belaya, E.A., Zherebtsov, D.A., Viktorov, V.V., Tikhonov, S.S., Ryabkov, Yu.I., Kovalev, I.N., and Vinnik, D.A., Thermolysis of nanoparticulate boehmite prepared via aluminum isopropylate hydrolysis, Inorg. Mater., 2018, vol. 54, no. 12, pp. 1238–1244. https://doi.org/10.1134/S0002337X1812014X

    Article  Google Scholar 

  29. Novikov, B.G., Balicheva, T.G., Belinskaya, F.A., and Materova, E.A., Infrared absorption spectra of a crystalline antimonic acid cation exchanger, Vestn. Leningr. Univ., Ser. Fiz. Khim, 1969, no. 4, pp. 110–115.

  30. Burmistrov, V.A., Kleshchev, D.G., Konev, V.N., and Pletnev, R.N., State of protons in hydrous antimony pentoxide, Dokl. Akad. Nauk SSSR, 1981, vol. 261, no. 2, pp. 366–368.

    CAS  Google Scholar 

  31. Slade, R.C.T., Hall, G.P., Ramanan, A., and Prince, E., Structure and proton conduction in pyrochlore-type antimonic acid: a neutron diffraction study, Solid State Ionics, 1996, vol. 92, nos. 3–4, pp. 171–181. https://doi.org/10.1016/S0167-2738(96)00497-3

    Article  CAS  Google Scholar 

  32. Yukhnevich, G.V., Advances in the use of infrared spectroscopy for the characterisation of OH bonds, Russ. Chem. Rev., 1963, vol. 32, no. 11, pp. 619–633.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Yu. Kovalenko.

Additional information

Translated by O. Tsarev

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kovalenko, L.Y., Yaroshenko, F.A., Burmistrov, V.A. et al. Thermolysis of Hydrated Antimony Pentoxide. Inorg Mater 55, 586–592 (2019). https://doi.org/10.1134/S0020168519060086

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0020168519060086

Keywords:

Navigation